使用 NEON 和 OpenMP 加速模板匹配算法
使用 NEON 和 OpenMP 加速模板匹配算法
以下是一个使用 NEON 和 OpenMP 实现模板匹配算法的示例代码:
#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp>
#include <omp.h>
void templateMatchingNEON(const cv::Mat& image, const cv::Mat& templ, cv::Mat& result) {
CV_Assert(image.depth() == CV_8U && templ.depth() == CV_8U);
CV_Assert(image.channels() == 1 && templ.channels() == 1);
const int imageWidth = image.cols;
const int imageHeight = image.rows;
const int templWidth = templ.cols;
const int templHeight = templ.rows;
const int resultWidth = imageWidth - templWidth + 1;
const int resultHeight = imageHeight - templHeight + 1;
result.create(resultHeight, resultWidth, CV_32F);
int i, j, k, l;
int simdSize = sizeof(float) / sizeof(uint8_t);
#pragma omp parallel for private(j, k, l) simd
for (i = 0; i < resultHeight; ++i) {
for (j = 0; j < resultWidth; j+=simdSize) {
const uint8_t* imagePtr = image.ptr<uint8_t>(i);
const uint8_t* templPtr = templ.ptr<uint8_t>(0);
float* resultPtr = result.ptr<float>(i);
uint8x8_t vtempl = vld1_u8(templPtr);
uint8x8_t vimage;
float32x4_t vsum0 = vdupq_n_f32(0.0f);
float32x4_t vsum1 = vdupq_n_f32(0.0f);
for (k = 0; k < templHeight; ++k) {
imagePtr = image.ptr<uint8_t>(i + k) + j;
templPtr = templ.ptr<uint8_t>(k);
for (l = 0; l < templWidth; l+=simdSize) {
vimage = vld1_u8(imagePtr + l);
uint16x8_t vdiff = vsubl_u8(vimage, vtempl);
float32x4_t vdiff0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16(vdiff)));
float32x4_t vdiff1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vdiff)));
vsum0 = vmlaq_f32(vsum0, vdiff0, vdiff0);
vsum1 = vmlaq_f32(vsum1, vdiff1, vdiff1);
}
}
vst1q_f32(resultPtr, vaddq_f32(vsum0, vsum1));
}
}
}
int main() {
cv::Mat image = cv::imread('image.png', cv::IMREAD_GRAYSCALE);
cv::Mat templ = cv::imread('template.png', cv::IMREAD_GRAYSCALE);
cv::Mat result;
templateMatchingNEON(image, templ, result);
cv::imshow('Result', result);
cv::waitKey(0);
return 0;
}
注意:上述代码使用了OpenCV和NEON的SIMD指令集来加速模板匹配算法。首先,我们使用NEON指令集来并行计算模板匹配,然后使用OpenMP来并行化对每个像素的处理。在代码中,我们使用了NEON的SIMD指令来进行向量化计算,以提高计算效率。
原文地址: https://www.cveoy.top/t/topic/qsef 著作权归作者所有。请勿转载和采集!