labels = [] preds = [] for idx, (images, target) in enumerate(data_loader): images = images.cuda(non_blocking=True) target = target.cuda(non_blocking=True) output = model(images) if config.EVAL_MODE: _, predicted = torch.max(output, 1) labels.extend(target.cpu().numpy()) preds.extend(predicted.cpu().numpy())


原文地址: https://www.cveoy.top/t/topic/pnSN 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录