FP-Growth 算法是一种用于频繁项集挖掘的算法,它的主要思想是利用 FP 树来发现频繁项集。下面是 FP-Growth 算法的 Python 实现:

  1. 首先定义一个节点类,用于表示 FP 树中的节点。
class Node:
    def __init__(self, item, count, parent):
        self.item = item  # 节点代表的项
        self.count = count  # 项的计数
        self.parent = parent  # 父节点
        self.children = {}  # 子节点列表
        self.next = None  # 指向相同项的下一个节点
        
    def increment(self, count):
        self.count += count
  1. 定义 FP-Growth 算法的主函数。
def fp_growth(data, min_support):
    # 构建频繁项集列表
    freq_items = {}
    for trans in data:
        for item in trans:
            freq_items[item] = freq_items.get(item, 0) + 1
    freq_items = {k:v for k,v in freq_items.items() if v >= min_support}
    freq_itemset = set(freq_items.keys())

    # 如果没有频繁项集,则直接返回
    if len(freq_itemset) == 0:
        return None, None

    # 构建 FP 树
    root = Node(None, 0, None)
    for trans, count in zip(data, count_list):
        ordered_items = [i for i in trans if i in freq_itemset]
        ordered_items.sort(key=lambda x: freq_items[x], reverse=True)
        if len(ordered_items) > 0:
            update_tree(ordered_items, count, root)

    # 构建条件模式基
    cond_pat_bases = {}
    for item in freq_itemset:
        cond_pat_bases[item] = get_cond_pat_base(item, root)

    # 递归地挖掘 FP 树
    freq_itemsets = []
    prefix = []
    mine_tree(root, freq_items, prefix, freq_itemsets, cond_pat_bases)
    return freq_itemsets, freq_items
  1. 定义用于更新 FP 树的函数。
def update_tree(items, count, root):
    node = root
    for item in items:
        if item in node.children:
            child = node.children[item]
            child.increment(count)
        else:
            child = Node(item, count, node)
            node.children[item] = child
            update_node_link(child, root)
        node = child
        
def update_node_link(node, header_table):
    if header_table[node.item][1] is None:
        header_table[node.item][1] = node
    else:
        curr = header_table[node.item][1]
        while curr.next is not None:
            curr = curr.next
        curr.next = node
  1. 定义用于获取条件模式基的函数。
def get_cond_pat_base(item, node):
    cond_pat_base = []
    while node is not None:
        prefix = []
        collect_prefix(node, prefix)
        if len(prefix) > 1:
            cond_pat_base.append((prefix[1:], node.count))
        node = node.next
    return cond_pat_base

def collect_prefix(node, prefix):
    if node.parent is not None:
        prefix.append(node.item)
        collect_prefix(node.parent, prefix)
  1. 定义用于递归挖掘 FP 树的函数。
def mine_tree(node, freq_items, prefix, freq_itemsets, cond_pat_bases):
    # 按照出现频率排序
    items = [item for item in freq_items.keys() if item not in prefix]
    items.sort(key=lambda x: freq_items[x], reverse=True)
    for item in items:
        new_prefix = prefix + [item]
        new_freq_itemset = prefix + [item]
        freq_itemsets.append(new_freq_itemset)
        cond_pat_base = cond_pat_bases[item]
        cond_tree, cond_freq_items = fp_growth([trans for trans, count in cond_pat_base], min_support)
        if cond_tree is not None:
            mine_tree(cond_tree, cond_freq_items, new_prefix, freq_itemsets, cond_pat_bases)

以上就是 FP-Growth 算法的 Python 实现。需要注意的是,FP-Growth 算法的实现中需要用到一个数据结构——FP 树,它是一种用于高效存储和查找频繁项集的树形结构,如果不熟悉 FP 树的实现,可能需要先了解一下。

FP-Growth 算法 Python 实现:高效频繁项集挖掘

原文地址: https://www.cveoy.top/t/topic/or6i 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录