基于深度学习的故障诊断:CNN模型训练与优化
基于深度学习的故障诊断:CNN模型训练与优化
概述
本项目使用卷积神经网络 (CNN) 进行故障诊断。我们提供了完整的代码实现,包括数据加载、模型构建、训练和评估等步骤。
代码解析
1. 数据加载与预处理pythonimport sysimport osimport argparseimport numpy as npimport timefrom sklearn.metrics import accuracy_score, confusion_matrixfrom models import CNNfrom mydataset import MyDatasetimport torchfrom torch.utils.data import DataLoaderimport torch.nn as nnimport matplotlib.pyplot as pltimport pandas as pdimport seaborn as sns # µ¼Èë°üimport matplotlib.font_manager as fmfrom tqdm import *import csv
...
def main(args): # »®·ÖѵÁ·¼¯¡¢²âÊÔ¼¯ train_dataset = MyDataset(args.root, args.txtpath, transform=None) train_loader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0) test_dataset = MyDataset(args.root2, args.txtpath2, transform=None) test_loader = DataLoader(dataset=test_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0)
# ...
这段代码首先导入了必要的库,然后定义了 main 函数,该函数是程序的入口点。在 main 函数中,我们使用 MyDataset 类加载训练集和测试集,并使用 DataLoader 类创建数据加载器。
2. 模型构建与训练python # ...
models = {'CNN': CNN}
# ¶þÕßÈ¡ÆäÒ» # model = torch.load('./modelpth/40.pth')#,map_location=torch.device('cpu')) # ¼ÓÔØ²ÎÊý model = models[args.model]()
if torch.cuda.is_available(): model = model.cuda() model = torch.load('./modelpth/finalmodel.pth')
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4, weight_decay=1e-5) # optimizer.load_state_dict(torch.load('save_optim.pt')) criterion = nn.CrossEntropyLoss() batches_per_epoch = int(len(train_dataset) / args.batch_size) train_loss_list = [] train_acc_list = [] test_loss_list = [] test_acc_list = [] train_time = 0 model_save_path = './modelpth/' os.makedirs(model_save_path, exist_ok=True) for epoch in range(50,args.epochs): # ... for (cnt, i) in enumerate(tqdm(train_loader)): # ... tlabels, tpredi, tloss = train(model, batch_x, batch_y, optimizer, criterion) # ...
# ... acc_score, loss_score, feature_list, C = test(model, test_loader, criterion) # ...
if epoch % 1 == 0: torch.save(model, f'./modelpth/{epoch}.pth') if epoch == args.epochs - 1: # ѵÁ·µ½×îºóÒ»ÂÖ # ...
这段代码定义了模型、优化器、损失函数等。然后,使用训练集对模型进行训练,并使用测试集评估模型性能。
3. 模型评估与可视化python# ...
def draw(train_acc, train_loss, test_acc, test_loss): #定义一个名为draw的函数,该函数接受四个参数:train_acc、train_loss、test_acc和test_loss。 # ...
def draw_result(C): # ...
.
原文地址: https://www.cveoy.top/t/topic/fsTQ 著作权归作者所有。请勿转载和采集!