CIFAR-10 Image Classification with CNN using PyTorch
Here is an example code to load the CIFAR-10 dataset, build a CNN network, train it, and evaluate its accuracy:
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
# Load CIFAR-10 dataset
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Define the CNN architecture
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
# Initialize the network
net = Net()
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# Train the network
num_epochs = 10
train_loss = []
val_loss = []
train_accuracy = []
val_accuracy = []
for epoch in range(num_epochs):
running_loss = 0.0
correct = 0
total = 0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
# Forward pass
outputs = net(inputs)
loss = criterion(outputs, labels)
# Backward pass and optimize
loss.backward()
optimizer.step()
# Compute statistics
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
# Compute training loss and accuracy
train_loss.append(running_loss / len(trainloader))
train_accuracy.append(correct / total)
# Compute validation loss and accuracy
val_loss_value = 0.0
val_correct = 0
val_total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
val_loss_value += criterion(outputs, labels).item()
_, predicted = torch.max(outputs.data, 1)
val_total += labels.size(0)
val_correct += (predicted == labels).sum().item()
val_loss.append(val_loss_value / len(testloader))
val_accuracy.append(val_correct / val_total)
print(f'Epoch {epoch+1}/{num_epochs}, Training Loss: {train_loss[-1]:.4f}, Training Accuracy: {train_accuracy[-1]:.4f}, Validation Loss: {val_loss[-1]:.4f}, Validation Accuracy: {val_accuracy[-1]:.4f}')
# Plot the training and validation loss
plt.figure()
plt.plot(range(num_epochs), train_loss, label='Training Loss')
plt.plot(range(num_epochs), val_loss, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
# Plot the training and validation accuracy
plt.figure()
plt.plot(range(num_epochs), train_accuracy, label='Training Accuracy')
plt.plot(range(num_epochs), val_accuracy, label='Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
# Print the final accuracy
print(f'
Final Training Accuracy: {train_accuracy[-1]:.4f}')
print(f'Final Validation Accuracy: {val_accuracy[-1]:.4f}')
# Evaluate on the test set
test_correct = 0
test_total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
test_total += labels.size(0)
test_correct += (predicted == labels).sum().item()
test_accuracy = test_correct / test_total
print(f'Testing Accuracy: {test_accuracy:.4f}')
You can modify the hyperparameters like the learning rate, number of epochs, batch size, etc. to improve the accuracy.
原文地址: https://www.cveoy.top/t/topic/dm63 著作权归作者所有。请勿转载和采集!