GAN网络模型代码
由于GAN模型的代码实现可能因应用场景和数据集不同而有所变化,因此这里提供一个基本的GAN网络模型代码框架,供参考。
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as dsets
from torchvision import transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
# 定义生成器类
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc = nn.Linear(100, 128)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(128, 784)
self.tanh = nn.Tanh()
def forward(self, x):
x = self.fc(x)
x = self.relu(x)
x = self.fc2(x)
x = self.tanh(x)
return x
# 定义判别器类
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.fc = nn.Linear(784, 128)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(128, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.fc(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return x
# 初始化生成器和判别器
generator = Generator()
discriminator = Discriminator()
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer_g = optim.Adam(generator.parameters(), lr=0.0002)
optimizer_d = optim.Adam(discriminator.parameters(), lr=0.0002)
# 定义数据集和数据加载器
batch_size = 128
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = dsets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 训练模型
num_epochs = 100
for epoch in range(num_epochs):
for i, (images, _) in enumerate(train_loader):
images = images.view(batch_size, -1)
real_labels = torch.ones(batch_size, 1)
fake_labels = torch.zeros(batch_size, 1)
# 训练判别器
discriminator.zero_grad()
outputs = discriminator(images)
d_loss_real = criterion(outputs, real_labels)
d_loss_real.backward()
z = torch.randn(batch_size, 100)
fake_images = generator(z)
outputs = discriminator(fake_images.detach())
d_loss_fake = criterion(outputs, fake_labels)
d_loss_fake.backward()
d_loss = d_loss_real + d_loss_fake
optimizer_d.step()
# 训练生成器
generator.zero_grad()
outputs = discriminator(fake_images)
g_loss = criterion(outputs, real_labels)
g_loss.backward()
optimizer_g.step()
if (i+1) % 200 == 0:
print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(train_loader), d_loss.item(), g_loss.item()))
# 生成图片并可视化
z = torch.randn(10, 100)
generated_images = generator(z)
generated_images = generated_images.view(10, 28, 28).detach().numpy()
fig, axs = plt.subplots(1, 10, figsize=(10, 1))
for i in range(10):
axs[i].imshow(generated_images[i], cmap='gray')
axs[i].axis('off')
plt.show()
在这个代码框架中,我们使用了PyTorch框架,定义了一个简单的生成器和判别器类。生成器输入100维的随机噪声,输出784维的向量,代表生成的手写数字图片;判别器则输入784维的向量,输出一个标量,代表输入图片是否真实。我们使用MNIST数据集来训练GAN模型,训练过程中先训练判别器,再训练生成器,直到达到预定的训练轮数。最后,我们生成10张假的手写数字图片,并可视化了它们。
原文地址: https://www.cveoy.top/t/topic/b4J3 著作权归作者所有。请勿转载和采集!