多特征融合深度学习模型用于八分类任务
多特征融合深度学习模型用于八分类任务
本项目使用CNN和BiGRU模型并行作为特征提取器,提取特征并进行融合,最终使用全连接层进行八分类。
数据集格式:
在训练集、验证集和测试集三个txt文件夹中有如上格式的数据集,每条样本前23位为特征值,最后一位为分类标签,标签共有8个类别。
7,7,183,233,10,10,3,10,3,10,0,25,21,0,0,2,78,2,1,0,0,86.6685638427734,1.25,4
7,7,183,233,10,10,3,10,3,10,0,25,21,90,80,20,10,2,1,0,0,86.4980087280273,1.10,0
7,0,183,0,9,0,3,10,3,0,0,25,123,90,80,20,10,0,1,0,1,0,1.00,7
模型结构:
- CNN模型:
- 使用二维卷积层提取图像特征。
- 使用最大池化层降维。
- 使用全连接层将特征映射到128维。
- BiGRU模型:
- 使用双向GRU模型提取序列特征。
- 使用最后一层的输出作为特征。
- 特征融合:
- 将CNN和BiGRU提取的特征进行拼接。
- 使用全连接层对融合后的特征进行八分类。
代码:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import numpy as np
# 定义CNN模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.fc = nn.Linear(64 * 7 * 7, 128)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.conv2(x)
x = self.relu(x)
x = self.maxpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# 定义BiGRU模型
class BiGRU(nn.Module):
def __init__(self):
super(BiGRU, self).__init__()
self.gru = nn.GRU(input_size=23, hidden_size=64, num_layers=2, bidirectional=True, batch_first=True)
def forward(self, x):
output, _ = self.gru(x)
return output[:, -1, :]
# 定义特征融合模型
class FusionNet(nn.Module):
def __init__(self):
super(FusionNet, self).__init__()
self.cnn = CNN()
self.gru = BiGRU()
self.fc = nn.Linear(128 + 64 * 2, 8)
def forward(self, x_cnn, x_gru):
out_cnn = self.cnn(x_cnn)
out_gru = self.gru(x_gru)
out = torch.cat((out_cnn, out_gru), dim=1)
out = self.fc(out)
return out
# 定义自定义数据集类
class CustomDataset(Dataset):
def __init__(self, file_path):
self.data = np.loadtxt(file_path, delimiter=',')
self.transform = transforms.Compose([transforms.ToTensor()])
def __getitem__(self, index):
features = self.data[index, :-1]
label = self.data[index, -1]
features = self.transform(features)
return features, label
def __len__(self):
return len(self.data)
# 定义训练函数
def train(model, train_loader, criterion, optimizer):
model.train()
train_loss = 0
correct = 0
total = 0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs, inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
train_loss /= len(train_loader)
accuracy = 100. * correct / total
return train_loss, accuracy
# 定义验证函数
def validate(model, val_loader, criterion):
model.eval()
val_loss = 0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:
outputs = model(inputs, inputs)
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
val_loss /= len(val_loader)
accuracy = 100. * correct / total
return val_loss, accuracy
# 定义测试函数
def test(model, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in test_loader:
outputs = model(inputs, inputs)
loss = criterion(outputs, labels)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
test_loss /= len(test_loader)
accuracy = 100. * correct / total
return test_loss, accuracy
# 设置超参数
batch_size = 32
learning_rate = 0.001
num_epochs = 10
# 加载数据集
train_dataset = CustomDataset('train.txt')
val_dataset = CustomDataset('val.txt')
test_dataset = CustomDataset('test.txt')
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 创建模型和优化器
model = FusionNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
train_loss, train_accuracy = train(model, train_loader, criterion, optimizer)
val_loss, val_accuracy = validate(model, val_loader, criterion)
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Accuracy: {:.2f}%, Val Loss: {:.4f}, Val Accuracy: {:.2f}%'
.format(epoch+1, num_epochs, train_loss, train_accuracy, val_loss, val_accuracy))
# 测试模型
test_loss, test_accuracy = test(model, test_loader, criterion)
print('Test Loss: {:.4f}, Test Accuracy: {:.2f}%'.format(test_loss, test_accuracy))
运行步骤:
- 将数据集保存为三个txt文件,分别命名为train.txt, val.txt, test.txt。
- 将代码保存为python文件。
- 运行python文件。
注意:
- 输入CNN模型的数据需要将其转化为图片格式,输入BiGRU的数据为原始数据的23位特征值。
- 训练过程有训练、验证和测试。
- 代码使用PyTorch编写。
- 代码中包含中文注释内容。

原文地址: http://www.cveoy.top/t/topic/lG7M 著作权归作者所有。请勿转载和采集!