The network architecture begins with a set of nine dense layers of sizes 100 500 1000 1500500 2000 1000 500 165 The transposed layers follow with dimensions 165 165 330 andfilters of size 8 4 4 The fi
import torch.nn as nn
class Network(nn.Module): def init(self): super(Network, self).init()
self.dense_layers = nn.Sequential(
nn.Linear(100, 500),
nn.Linear(500, 1000),
nn.Linear(1000, 1500),
nn.Linear(1500, 500),
nn.Linear(500, 2000),
nn.Linear(2000, 1000),
nn.Linear(1000, 500),
nn.Linear(500, 165),
)
self.transposed_layers = nn.Sequential(
nn.ConvTranspose1d(165, 165, kernel_size=8),
nn.ConvTranspose1d(165, 165, kernel_size=4),
nn.ConvTranspose1d(165, 330, kernel_size=4),
)
self.conv_layer = nn.Conv1d(1, 4, kernel_size=4, stride=1)
def forward(self, x):
x = self.dense_layers(x)
x = x.unsqueeze(1)
x = self.transposed_layers(x)
x = self.conv_layer(x)
x = x[:, :, 15:-15]
return x.squeeze(
原文地址: http://www.cveoy.top/t/topic/fomN 著作权归作者所有。请勿转载和采集!