首先,我们需要读取训练集和测试集文件,并进行数据处理,将日期和时间合并成一个时间戳,并将其作为索引。然后,我们可以使用Pandas中的rolling函数来计算移动窗口平均值和移动窗口标准差,作为特征输入到模型中。最后,我们可以使用Keras或其他机器学习框架构建模型来预测未来的收盘价。

以下是一个可能的解法示例:

import pandas as pd
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout

# 读取训练集和测试集文件
train_df = pd.read_csv('train.csv')
test_df = pd.read_csv('test.csv')

# 将日期和时间合并成一个时间戳,并将其作为索引
train_df['timestamp'] = pd.to_datetime(train_df['date'] + ' ' + train_df['time'])
train_df = train_df.set_index('timestamp')
test_df['timestamp'] = pd.to_datetime(test_df['date'] + ' ' + test_df['time'])
test_df = test_df.set_index('timestamp')

# 移动窗口计算特征值
window_size = 24 * 5  # 24个时间点为一个周期,每个周期有5分钟
train_df['rolling_mean'] = train_df['close'].rolling(window=window_size).mean()
train_df['rolling_std'] = train_df['close'].rolling(window=window_size).std()
test_df['rolling_mean'] = test_df['close'].rolling(window=window_size).mean()
test_df['rolling_std'] = test_df['close'].rolling(window=window_size).std()

# 准备训练集和测试集
X_train = train_df[['rolling_mean', 'rolling_std']].values[window_size:]
y_train = train_df['close'].values[window_size:]
X_test = test_df[['rolling_mean', 'rolling_std']].values[window_size:-3]
y_test = test_df['close'].values[window_size+3:]

# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, input_shape=(X_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')

# 将特征值转换成LSTM输入格式
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

# 训练模型
model.fit(X_train, y_train, epochs=50, batch_size=32)

# 预测未来3个时间点的收盘价
X_pred = test_df[['rolling_mean', 'rolling_std']].values[-3:]
X_pred = np.reshape(X_pred, (1, X_pred.shape[0], 1))
y_pred = model.predict(X_pred)

print('预测未来3个时间点的收盘价为:', y_pred)

需要注意的是,上述代码仅为示例,实际应用中可能需要进行更多的数据处理和特征工程


原文地址: http://www.cveoy.top/t/topic/fmmK 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录