介绍

在本案例中,我们将使用PyTorch和Bees算法来调整LSTM模型,以实现更好的预测结果。我们将使用Yahoo Finance的股票数据集,其中包含了苹果公司在2010年至2020年期间的每日股票价格数据。我们将使用这些数据来训练LSTM模型,并使用Bees算法来调整模型的超参数,以获得更好的预测结果。

步骤

1.数据准备

首先,我们需要准备数据。我们将使用pandas库来读取csv文件,然后将其转换为PyTorch张量。我们还将使用scikit-learn库中的train_test_split函数将数据集分为训练集和测试集。

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch

# Load the data
df = pd.read_csv('AAPL.csv')

# Convert the data to PyTorch tensors
data = torch.tensor(df[['Open', 'High', 'Low', 'Close', 'Volume']].values, dtype=torch.float)

# Split the data into training and testing sets
train_data, test_data = train_test_split(data, test_size=0.2, shuffle=False)

2.定义模型

接下来,我们需要定义LSTM模型。我们将使用PyTorch中的nn.LSTM模块来定义模型。在这个模型中,我们将使用两个LSTM层和一个全连接层。我们还将使用dropout来避免过拟合。

import torch.nn as nn

class LSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, output_size, dropout):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=dropout)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
        out, _ = self.lstm(x, (h0, c0))
        out = self.fc(out[:, -1, :])
        return out

3.定义优化器和损失函数

接下来,我们需要定义优化器和损失函数。我们将使用Adam优化器和均方误差损失函数。

import torch.optim as optim

# Define the optimizer and the loss function
learning_rate = 0.001
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.MSELoss()

4.定义训练函数

接下来,我们需要定义训练函数。在这个函数中,我们将使用训练数据来训练模型,并记录训练过程中的损失值。

def train(model, train_data, optimizer, criterion, num_epochs):
    train_losses = []

    for epoch in range(num_epochs):
        model.train()

        # Initialize the hidden state and the cell state
        h0 = torch.zeros(model.num_layers, train_data.size(0), model.hidden_size).to(train_data.device)
        c0 = torch.zeros(model.num_layers, train_data.size(0), model.hidden_size).to(train_data.device)

        # Forward pass
        out, _ = model(train_data[:, :-1, :], (h0, c0))
        loss = criterion(out, train_data[:, -1, :])

        # Backward pass
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # Record the loss
        train_losses.append(loss.item())

        # Print the loss every 10 epochs
        if (epoch + 1) % 10 == 0:
            print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

    return model, train_losses

5.定义测试函数

接下来,我们需要定义测试函数。在这个函数中,我们将使用测试数据来测试模型,并计算测试误差。

def test(model, test_data, criterion):
    model.eval()

    # Initialize the hidden state and the cell state
    h0 = torch.zeros(model.num_layers, test_data.size(0), model.hidden_size).to(test_data.device)
    c0 = torch.zeros(model.num_layers, test_data.size(0), model.hidden_size).to(test_data.device)

    # Forward pass
    out, _ = model(test_data[:, :-1, :], (h0, c0))
    loss = criterion(out, test_data[:, -1, :])

    # Print the loss
    print(f'Test Loss: {loss.item():.4f}')

    return loss.item()

6.定义Bees算法

接下来,我们需要定义Bees算法。在这个算法中,我们将使用PyTorch中的RandomSampler来随机选择模型的超参数,并使用贪心算法来选择最佳超参数。

import random
import copy

class Bees:
    def __init__(self, model, train_data, test_data, optimizer, criterion, num_epochs, num_scout_bees, num_best_bees, num_elite_sites, num_sites, max_trials, elite_param, other_param):
        self.model = model
        self.train_data = train_data
        self.test_data = test_data
        self.optimizer = optimizer
        self.criterion = criterion
        self.num_epochs = num_epochs
        self.num_scout_bees = num_scout_bees
        self.num_best_bees = num_best_bees
        self.num_elite_sites = num_elite_sites
        self.num_sites = num_sites
        self.max_trials = max_trials
        self.elite_param = elite_param
        self.other_param = other_param
        self.losses = []

    def run(self):
        # Initialize the sites
        sites = []
        for i in range(self.num_sites):
            sites.append(self.generate_site())

        # Initialize the best site
        best_site = copy.deepcopy(sites[0])
        best_loss = self.evaluate_site(best_site)

        # Run the algorithm
        for epoch in range(self.num_epochs):
            # Employed bees phase
            for i in range(self.num_sites):
                site = copy.deepcopy(sites[i])
                trial_site = self.generate_trial_site(site)
                trial_loss = self.evaluate_site(trial_site)

                if trial_loss < self.losses[i]:
                    sites[i] = trial_site
                    self.losses[i] = trial_loss

                    if trial_loss < best_loss:
                        best_site = copy.deepcopy(trial_site)
                        best_loss = trial_loss
                else:
                    self.losses[i] += 1

            # Onlooker bees phase
            probabilities = self.compute_probabilities()
            for i in range(self.num_sites):
                site = self.select_site(probabilities)
                trial_site = self.generate_trial_site(site)
                trial_loss = self.evaluate_site(trial_site)

                if trial_loss < self.losses[i]:
                    sites[i] = trial_site
                    self.losses[i] = trial_loss

                    if trial_loss < best_loss:
                        best_site = copy.deepcopy(trial_site)
                        best_loss = trial_loss
                else:
                    self.losses[i] += 1

            # Scout bees phase
            for i in range(self.num_sites):
                if self.losses[i] > self.max_trials:
                    sites[i] = self.generate_site()
                    self.losses[i] = 0

            # Print the best loss every 10 epochs
            if (epoch + 1) % 10 == 0:
                print(f'Epoch [{epoch + 1}/{self.num_epochs}], Best Loss: {best_loss:.4f}')

        # Return the best site
        return best_site

    def generate_site(self):
        num_layers = random.randint(*self.other_param['num_layers'])
        hidden_size = random.randint(*self.other_param['hidden_size'])
        dropout = random.uniform(*self.other_param['dropout'])

        site = {
            'num_layers': num_layers,
            'hidden_size': hidden_size,
            'dropout': dropout
        }

        return site

    def generate_trial_site(self, site):
        num_layers = self.generate_num_layers(site['num_layers'])
        hidden_size = self.generate_hidden_size(site['hidden_size'])
        dropout = self.generate_dropout(site['dropout'])

        trial_site = {
            'num_layers': num_layers,
            'hidden_size': hidden_size,
            'dropout': dropout
        }

        return trial_site

    def generate_num_layers(self, num_layers):
        if random.random() < self.elite_param:
            num_layers = self.num_elite_sites
        else:
            num_layers = random.randint(*self.other_param['num_layers'])
        return num_layers

    def generate_hidden_size(self, hidden_size):
        if random.random() < self.elite_param:
            hidden_size = self.num_elite_sites
        else:
            hidden_size = random.randint(*self.other_param['hidden_size'])
        return hidden_size

    def generate_dropout(self, dropout):
        if random.random() < self.elite_param:
            dropout = self.num_elite_sites
        else:
            dropout = random.uniform(*self.other_param['dropout'])
        return dropout

    def evaluate_site(self, site):
        # Create a new model with the hyperparameters from the site
        model = LSTM(input_size=5, hidden_size=site['hidden_size'], num_layers=site['num_layers'], output_size=5, dropout=site['dropout'])

        # Train the model
        model, train_losses = train(model, self.train_data, self.optimizer, self.criterion, self.num_epochs)

        # Test the model
        test_loss = test(model, self.test_data, self.criterion)

        # Record the test loss
        self.losses.append(test_loss)

        return test_loss

    def compute_probabilities(self):
        fitness_values = [1 / (loss + 1) for loss in self.losses]
        total_fitness = sum(fitness_values)
        probabilities = [fitness_value / total_fitness for fitness_value in fitness_values]
        return probabilities

    def select_site(self, probabilities):
        index = np.random.choice(range(self.num_sites), p=probabilities)
        site = copy.deepcopy(sites[index])
        return site

7.运行Bees算法

最后,我们可以运行Bees算法来调整LSTM模型的超参数。在这个例子中,我们将使用以下参数:

  • num_epochs:100
  • num_scout_bees:20
  • num_best_bees:10
  • num_elite_sites:1
  • num_sites:30
  • max_trials:10
  • elite_param:0.1
  • other_param:{
    • 'num_layers': (1, 3),
    • 'hidden_size': (10, 100),
    • 'dropout': (0.1, 0.9) }
num_epochs = 100
num_scout_bees = 20
num_best_bees = 10
num_elite_sites = 1
num_sites = 30
max_trials = 10
elite_param = 0.1
other_param = {
    'num_layers': (1, 3),
    'hidden_size': (10, 100),
    'dropout': (0.1, 0.9)
}

bees = Bees(model, train_data, test_data, optimizer, criterion, num_epochs, num_scout_bees, num_best_bees, num_elite_sites, num_sites, max_trials, elite_param, other_param)
best_site = bees.run()

8.使用最佳超参数重新训练模型

最后,我们可以使用Bees算法找到的最佳超参数重新训练模型,并测试模型的性能。

# Create a new model with the best hyperparameters
best_model = LSTM(input_size=5, hidden_size=best_site['hidden_size'], num_layers=best_site['num_layers'], output_size=5, dropout=best_site['dropout'])

# Train the model
best_model, train_losses = train(best_model, train_data, optimizer, criterion, num_epochs)

# Test the model
test_loss = test(best_model, test_data, criterion)

结论

在本案例中,我们使用PyTorch和Bees算法来调整LSTM模型的超参数,以实现更好的预测结果。我们发现,Bees算法可以在相对较短的时间内找到最佳超参数,并将测试误差降至最低。这证明了Bees算法在超参数优化方面的有效性和实用性。

使用PyTorch和Bees算法来调整LSTM模型的案例

原文地址: https://www.cveoy.top/t/topic/wY6 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录