使用PyTorch和Bees算法来调整LSTM模型的案例
介绍
在本案例中,我们将使用PyTorch和Bees算法来调整LSTM模型,以实现更好的预测结果。我们将使用Yahoo Finance的股票数据集,其中包含了苹果公司在2010年至2020年期间的每日股票价格数据。我们将使用这些数据来训练LSTM模型,并使用Bees算法来调整模型的超参数,以获得更好的预测结果。
步骤
1.数据准备
首先,我们需要准备数据。我们将使用pandas库来读取csv文件,然后将其转换为PyTorch张量。我们还将使用scikit-learn库中的train_test_split函数将数据集分为训练集和测试集。
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import torch
# Load the data
df = pd.read_csv('AAPL.csv')
# Convert the data to PyTorch tensors
data = torch.tensor(df[['Open', 'High', 'Low', 'Close', 'Volume']].values, dtype=torch.float)
# Split the data into training and testing sets
train_data, test_data = train_test_split(data, test_size=0.2, shuffle=False)
2.定义模型
接下来,我们需要定义LSTM模型。我们将使用PyTorch中的nn.LSTM模块来定义模型。在这个模型中,我们将使用两个LSTM层和一个全连接层。我们还将使用dropout来避免过拟合。
import torch.nn as nn
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, dropout):
super().__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=dropout)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
3.定义优化器和损失函数
接下来,我们需要定义优化器和损失函数。我们将使用Adam优化器和均方误差损失函数。
import torch.optim as optim
# Define the optimizer and the loss function
learning_rate = 0.001
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
criterion = nn.MSELoss()
4.定义训练函数
接下来,我们需要定义训练函数。在这个函数中,我们将使用训练数据来训练模型,并记录训练过程中的损失值。
def train(model, train_data, optimizer, criterion, num_epochs):
train_losses = []
for epoch in range(num_epochs):
model.train()
# Initialize the hidden state and the cell state
h0 = torch.zeros(model.num_layers, train_data.size(0), model.hidden_size).to(train_data.device)
c0 = torch.zeros(model.num_layers, train_data.size(0), model.hidden_size).to(train_data.device)
# Forward pass
out, _ = model(train_data[:, :-1, :], (h0, c0))
loss = criterion(out, train_data[:, -1, :])
# Backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Record the loss
train_losses.append(loss.item())
# Print the loss every 10 epochs
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
return model, train_losses
5.定义测试函数
接下来,我们需要定义测试函数。在这个函数中,我们将使用测试数据来测试模型,并计算测试误差。
def test(model, test_data, criterion):
model.eval()
# Initialize the hidden state and the cell state
h0 = torch.zeros(model.num_layers, test_data.size(0), model.hidden_size).to(test_data.device)
c0 = torch.zeros(model.num_layers, test_data.size(0), model.hidden_size).to(test_data.device)
# Forward pass
out, _ = model(test_data[:, :-1, :], (h0, c0))
loss = criterion(out, test_data[:, -1, :])
# Print the loss
print(f'Test Loss: {loss.item():.4f}')
return loss.item()
6.定义Bees算法
接下来,我们需要定义Bees算法。在这个算法中,我们将使用PyTorch中的RandomSampler来随机选择模型的超参数,并使用贪心算法来选择最佳超参数。
import random
import copy
class Bees:
def __init__(self, model, train_data, test_data, optimizer, criterion, num_epochs, num_scout_bees, num_best_bees, num_elite_sites, num_sites, max_trials, elite_param, other_param):
self.model = model
self.train_data = train_data
self.test_data = test_data
self.optimizer = optimizer
self.criterion = criterion
self.num_epochs = num_epochs
self.num_scout_bees = num_scout_bees
self.num_best_bees = num_best_bees
self.num_elite_sites = num_elite_sites
self.num_sites = num_sites
self.max_trials = max_trials
self.elite_param = elite_param
self.other_param = other_param
self.losses = []
def run(self):
# Initialize the sites
sites = []
for i in range(self.num_sites):
sites.append(self.generate_site())
# Initialize the best site
best_site = copy.deepcopy(sites[0])
best_loss = self.evaluate_site(best_site)
# Run the algorithm
for epoch in range(self.num_epochs):
# Employed bees phase
for i in range(self.num_sites):
site = copy.deepcopy(sites[i])
trial_site = self.generate_trial_site(site)
trial_loss = self.evaluate_site(trial_site)
if trial_loss < self.losses[i]:
sites[i] = trial_site
self.losses[i] = trial_loss
if trial_loss < best_loss:
best_site = copy.deepcopy(trial_site)
best_loss = trial_loss
else:
self.losses[i] += 1
# Onlooker bees phase
probabilities = self.compute_probabilities()
for i in range(self.num_sites):
site = self.select_site(probabilities)
trial_site = self.generate_trial_site(site)
trial_loss = self.evaluate_site(trial_site)
if trial_loss < self.losses[i]:
sites[i] = trial_site
self.losses[i] = trial_loss
if trial_loss < best_loss:
best_site = copy.deepcopy(trial_site)
best_loss = trial_loss
else:
self.losses[i] += 1
# Scout bees phase
for i in range(self.num_sites):
if self.losses[i] > self.max_trials:
sites[i] = self.generate_site()
self.losses[i] = 0
# Print the best loss every 10 epochs
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{self.num_epochs}], Best Loss: {best_loss:.4f}')
# Return the best site
return best_site
def generate_site(self):
num_layers = random.randint(*self.other_param['num_layers'])
hidden_size = random.randint(*self.other_param['hidden_size'])
dropout = random.uniform(*self.other_param['dropout'])
site = {
'num_layers': num_layers,
'hidden_size': hidden_size,
'dropout': dropout
}
return site
def generate_trial_site(self, site):
num_layers = self.generate_num_layers(site['num_layers'])
hidden_size = self.generate_hidden_size(site['hidden_size'])
dropout = self.generate_dropout(site['dropout'])
trial_site = {
'num_layers': num_layers,
'hidden_size': hidden_size,
'dropout': dropout
}
return trial_site
def generate_num_layers(self, num_layers):
if random.random() < self.elite_param:
num_layers = self.num_elite_sites
else:
num_layers = random.randint(*self.other_param['num_layers'])
return num_layers
def generate_hidden_size(self, hidden_size):
if random.random() < self.elite_param:
hidden_size = self.num_elite_sites
else:
hidden_size = random.randint(*self.other_param['hidden_size'])
return hidden_size
def generate_dropout(self, dropout):
if random.random() < self.elite_param:
dropout = self.num_elite_sites
else:
dropout = random.uniform(*self.other_param['dropout'])
return dropout
def evaluate_site(self, site):
# Create a new model with the hyperparameters from the site
model = LSTM(input_size=5, hidden_size=site['hidden_size'], num_layers=site['num_layers'], output_size=5, dropout=site['dropout'])
# Train the model
model, train_losses = train(model, self.train_data, self.optimizer, self.criterion, self.num_epochs)
# Test the model
test_loss = test(model, self.test_data, self.criterion)
# Record the test loss
self.losses.append(test_loss)
return test_loss
def compute_probabilities(self):
fitness_values = [1 / (loss + 1) for loss in self.losses]
total_fitness = sum(fitness_values)
probabilities = [fitness_value / total_fitness for fitness_value in fitness_values]
return probabilities
def select_site(self, probabilities):
index = np.random.choice(range(self.num_sites), p=probabilities)
site = copy.deepcopy(sites[index])
return site
7.运行Bees算法
最后,我们可以运行Bees算法来调整LSTM模型的超参数。在这个例子中,我们将使用以下参数:
- num_epochs:100
- num_scout_bees:20
- num_best_bees:10
- num_elite_sites:1
- num_sites:30
- max_trials:10
- elite_param:0.1
- other_param:{
- 'num_layers': (1, 3),
- 'hidden_size': (10, 100),
- 'dropout': (0.1, 0.9) }
num_epochs = 100
num_scout_bees = 20
num_best_bees = 10
num_elite_sites = 1
num_sites = 30
max_trials = 10
elite_param = 0.1
other_param = {
'num_layers': (1, 3),
'hidden_size': (10, 100),
'dropout': (0.1, 0.9)
}
bees = Bees(model, train_data, test_data, optimizer, criterion, num_epochs, num_scout_bees, num_best_bees, num_elite_sites, num_sites, max_trials, elite_param, other_param)
best_site = bees.run()
8.使用最佳超参数重新训练模型
最后,我们可以使用Bees算法找到的最佳超参数重新训练模型,并测试模型的性能。
# Create a new model with the best hyperparameters
best_model = LSTM(input_size=5, hidden_size=best_site['hidden_size'], num_layers=best_site['num_layers'], output_size=5, dropout=best_site['dropout'])
# Train the model
best_model, train_losses = train(best_model, train_data, optimizer, criterion, num_epochs)
# Test the model
test_loss = test(best_model, test_data, criterion)
结论
在本案例中,我们使用PyTorch和Bees算法来调整LSTM模型的超参数,以实现更好的预测结果。我们发现,Bees算法可以在相对较短的时间内找到最佳超参数,并将测试误差降至最低。这证明了Bees算法在超参数优化方面的有效性和实用性。
原文地址: https://www.cveoy.top/t/topic/wY6 著作权归作者所有。请勿转载和采集!