基于深度学习的4个参数预测模型:输入量为10个曲线特征点,输出值是4个参数(储存的数据是存储归一化的值还是真实值)
matlab/nclear/n%%/n%归一化阶段/n%读取应力样本数据/np1=xlsread('C:/Users/Administrator/Desktop/样本数据汇总/铁素体/大范围数据/总处理.xlsx','sheet1');/n%p3=p1';/n%[p1,p2]=mapminmax(p1,0,1);/nfor i=1:9/n p3(:,i)=(p1(:,i)-60)/2500;/nend/np3(:,10)=p1(:,11); %矩阵定义的事,/nt1=xlsread('C:/Users/Administrator/Desktop/样本数据汇总/铁素体/大范围数据/总处理.xlsx','sheet2');/n/n/nt2(:,1)=(t1(:,2)-100)/400;/nt2(:,2)=(t1(:,3)-t1(:,4)-20)/280;/nt2(:,3)=(t1(:,4)-20)/480;/nt2(:,4)=(t1(:,5)-150)/350;/np4=p3';/nt4=t2';/na1=0;/n/nfor i8=[100,500,1000,2000,5000]/n a1=a1+1;/n for i7=1:i8/n p(:,i7)=p4(:,i7);/n t(:,i7)=t4(:,i7);/n end/n%end/n%%/n%创建net/n%创建BP网络和定义训练函数及参数/n a2=0;/nfor i5=[6,10,16,26,35]/n a2=a2+1;/n i10=round(i5*.618);/n net=newff(minmax(p),[i10,i5,4],{'logsig','logsig','logsig','purelin'},'trainscg');/n net.trainParam.lr=0.1; %学习速率/n net.trainParam.mc=0.9; %动量因子/n net.trainParam.epochs=10000; %最大的训练次数/n net.trainParam.goal=1.0e-4; %训练要求精度/n net.trainParam.show = 50;/n net=init(net); %初始化神经网络/n %训练神经网络 /n [net,tr]=train(net,p,t); %[神经网络的名称(随意命名),展示训练记录按钮]/n a14= strcat('F:/神经网络算法/训练好的神经网络撒双层4(汇总)/net', num2str(1),'.mat'); %strcat将字符型变量连接起来/n save(a14,'net'); %把训练好的神经网络保存起来(save文件位置+名称,'要保存的神经网络结构名称')/n %%/n %神经网络的验证环节/n %B1=[395;418;463;526;609;699;797;895;957;0.00494;0.34578]'; %奥氏体数据/n %B1=[269;280;301;330.5;365;403.8;440.4;470.2;483.8;0.00267;0.167]';%铁素体数据/n /n %低应变奥氏体数据/n %B1=zeros();/n %B2=zeros();/n /n B1=xlsread('C:/Users/Administrator/Desktop/神经网络结构确定/铁素体50组验证/excel1.xls','sheet1');/n for i6=1:50/n B2=zeros();/n for i2=1:9/n B2(1,i2)=B1(i6,i2);/n end/n B2(1,10)=B1(i6,11);/n /n for i=1:9/n B2(1,i)=(B2(1,i)-60)/2500;/n end/n a12=sim(net,B2'); %[训练出来的神经网络算法名称,要预测的变量]/n %a13(1,i1-4)=a12(1,1)*15+45;/n %a13(2,i1-4)=a12(2,1)*130+180;/n %a13(4,i1-4)=a12(4,1)*320+30;/n %a13(3,i1-4)=a12(3,1)*160+40+a13(4,i1-4);/n %a13(1+4*(i3-5),i1)=55;/n %a13(2+4*(i3-5),i1)=a12(1,1)*400+100;/n %a13(4+4*(i3-5),i1)=a12(3,1)*480+20;/n %a13(3+4*(i3-5),i1)=a12(2,1)*380+20+a13(4,i1);/n a13(1,(a1-1)*250+50*(a2-1)+i6)=55;/n a13(2,(a1-1)*250+50*(a2-1)+i6)=a12(1,1)*400+100;/n a13(4,(a1-1)*250+50*(a2-1)+i6)=a12(3,1)*480+20;/n a13(3,(a1-1)*250+50*(a2-1)+i6)=a12(2,1)*280+20+a13(4,(a1-1)*250+50*(a2-1)+i6);/n a13(4,(a1-1)*250+50*(a2-1)+i6)=a12(4,1)*350+150;/n end/nend/nend/n/n%end/nxlswrite('C:/zuhe1.xls',a13','sheet1','A1');/n/n/n修改的部分包括:/n1. 将输出层的神经元个数从3改为4,即net=newff(minmax(p),[i10,i5,4],{'logsig','logsig','logsig','purelin'},'trainscg');。/n2. 在归一化阶段添加第四个参数的归一化处理。假设第四个参数为t1(:,5),则添加以下代码:/nmatlab/nt2(:,4)=(t1(:,5)-150)/350;/n
原文地址: https://www.cveoy.top/t/topic/qu0O 著作权归作者所有。请勿转载和采集!