Llama 2 7B Text Completion with Torchrun
Llama 2 7B Text Completion with Torchrun
This script demonstrates how to use Torchrun to run a text completion model based on Llama 2 7B.
Requirements:
- Python 3.6 or higher
- PyTorch
- Transformers library
Installation:
pip install torch transformers
Usage:
python run_text_completion.py --ckpt_dir 'llama-2-7b/' --tokenizer_path 'tokenizer.model' --max_seq_len 128 --max_batch_size 4
Code:
import argparse
from example_text_completion import main
parser = argparse.ArgumentParser()
parser.add_argument('--ckpt_dir', type=str, default='llama-2-7b/')
parser.add_argument('--tokenizer_path', type=str, default='tokenizer.model')
parser.add_argument('--max_seq_len', type=int, default=128)
parser.add_argument('--max_batch_size', type=int, default=4)
args = parser.parse_args()
main(args)
Explanation:
run_text_completion.py: This is the Python script containing the code. It uses theargparselibrary to define command-line arguments for configuring the model execution.ckpt_dir: Specifies the directory where the model checkpoint is located.tokenizer_path: Provides the path to the tokenizer model file used for encoding and decoding text.max_seq_len: Defines the maximum length of input sequences.max_batch_size: Sets the maximum batch size for model inference.main(args): This function is from theexample_text_completion.pyfile and handles the core text completion logic using the provided arguments.
This script provides a basic example of using Torchrun to run a Llama 2 7B text completion model. You can modify the script and arguments to fit your specific needs and experiment with different model configurations.
原文地址: https://www.cveoy.top/t/topic/qrVD 著作权归作者所有。请勿转载和采集!