麦克纳姆轮机器人运动学分析:机体坐标系与里程计坐标系变换及轮子转动角度计算
机体坐标系和里程计坐标系的变换关系可以表示为一个4x4的齐次变换矩阵T,即\n\nT = T_translation * T_rotation\n\n其中,T_translation表示平移变换矩阵,T_rotation表示旋转变换矩阵。\n\n平移变换矩阵T_translation可以表示为:\n\nT_translation = \n[1 0 0 x]\n[0 1 0 y]\n[0 0 1 z]\n[0 0 0 1]\n\n其中,(x, y, z)表示机体坐标系原点相对于里程计坐标系原点的平移量。\n\n旋转变换矩阵T_rotation可以表示为绕Z轴旋转θ角度的变换矩阵:\n\nT_rotation = \n[cosθ -sinθ 0 0]\n[sinθ cosθ 0 0]\n[0 0 1 0]\n[0 0 0 1]\n\n其中,θ表示机体坐标系相对于里程计坐标系的旋转角度。\n\n根据题目描述的机器人底盘运动路径,可以得到机体坐标系相对于里程计坐标系的变换关系为:\n\nT = T_translation * T_rotation\n\n具体计算过程如下:\n\n先向前移动1s:\nx = 2m/s * 1s = 2m\ny = 0\nz = 0\n\n旋转π/6 rad/s逆时针旋转2s:\nθ = π/6 rad/s * 2s = π/3 rad\n\n再向右平移3s:\nx = 2m/s * 3s = 6m\ny = 0\nz = 0\n\n将上述计算结果代入平移和旋转变换矩阵,得到机体坐标系相对于里程计坐标系的变换关系:\n\nT = \n[cos(π/3) -sin(π/3) 0 6]\n[sin(π/3) cos(π/3) 0 0]\n[0 0 1 0]\n[0 0 0 1]\n\n根据变换矩阵的定义,可以得到四个麦克纳姆轮的转动角度分别为:\n\n左前轮:θ1 = arctan2(y1, x1) = arctan2(0, 1) = 0 rad\n右前轮:θ2 = arctan2(y2, x2) = arctan2(0, -1) = π rad\n左后轮:θ3 = arctan2(y3, x3) = arctan2(0, 1) = 0 rad\n右后轮:θ4 = arctan2(y4, x4) = arctan2(0, -1) = π rad\n\n因此,四个麦克纳姆轮累计起来分别转了0度、π度、0度、π度。\n\n代码实现:\n\nimport numpy as np\n\n# 机器人底盘参数\nwheelbase = 1.0 # 轴距\ntrack = 1.0 # 轮距\nwheel_radius = 0.075 # 轮子半径\n\n# 机器人底盘运动路径\nforward_velocity = 2.0 # 向前移动速度(m/s)\nforward_duration = 1.0 # 向前移动持续时间(s)\nrotation_velocity = np.pi / 6 # 旋转角速度(rad/s)\nrotation_duration = 2.0 # 旋转持续时间(s)\nright_velocity = 1.0 # 向右平移速度(m/s)\nright_duration = 3.0 # 向右平移持续时间(s)\n\n# 计算机体坐标系相对于里程计坐标系的变换关系\nx_translation = forward_velocity * forward_duration + right_velocity * right_duration\ny_translation = 0.0\nz_translation = 0.0\nrotation_angle = rotation_velocity * rotation_duration\n\nT_translation = np.array([[1, 0, 0, x_translation],\n [0, 1, 0, y_translation],\n [0, 0, 1, z_translation],\n [0, 0, 0, 1]])\n\nT_rotation = np.array([[np.cos(rotation_angle), -np.sin(rotation_angle), 0, 0],\n [np.sin(rotation_angle), np.cos(rotation_angle), 0, 0],\n [0, 0, 1, 0],\n [0, 0, 0, 1]])\n\nT = np.dot(T_translation, T_rotation)\n\n# 计算四个麦克纳姆轮的转动角度\nwheel1_angle = np.arctan2(0, wheelbase + track) # 左前轮\nwheel2_angle = np.arctan2(0, -wheelbase + track) # 右前轮\nwheel3_angle = np.arctan2(0, wheelbase - track) # 左后轮\nwheel4_angle = np.arctan2(0, -wheelbase - track) # 右后轮\n\nprint("四个麦克纳姆轮的转动角度:")\nprint("左前轮:", np.rad2deg(wheel1_angle), "度")\nprint("右前轮:", np.rad2deg(wheel2_angle), "度")\nprint("左后轮:", np.rad2deg(wheel3_angle), "度")\nprint("右后轮:", np.rad2deg(wheel4_angle), "度")
原文地址: https://www.cveoy.top/t/topic/pwBQ 著作权归作者所有。请勿转载和采集!