基于CNN-GCN模型的多标签节点标签预测
基于CNN-GCN模型的多标签节点标签预测
本文介绍了如何使用CNN-GCN模型进行多标签节点标签预测,每个节点有8个标签,储存在'C:\Users\jh\Desktop\data\input\labels{i}_{j}.txt'文本文件中,标签用空格隔开,真实标签值只有0、1、2、3、4五个类别,但每个节点的标签是一个8维的标签向量。
代码实现
import os
import pandas as pd
import torch
import torch.nn as nn
from torch_geometric.data import Data, DataLoader
from torch_geometric.nn import GCNConv
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from sklearn.model_selection import train_test_split
# 定义CNN网络
class CNN(nn.Module):
def __init__(self, in_channels, out_channels):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 16, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.conv2 = nn.Conv2d(16, out_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
return x
# 定义GCN模型
class GCN(nn.Module):
def __init__(self, in_channels, out_channels):
super(GCN, self).__init__()
self.conv1 = GCNConv(in_channels, 128)
self.dropout = nn.Dropout(p=0.5)
self.conv2 = GCNConv(128, out_channels)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.relu(self.conv1(x, edge_index))
x = self.dropout(x)
x = self.conv2(x, edge_index)
return x
# 读取边的关系数据
edges = pd.read_csv('C:\Users\jh\Desktop\data\input\edges_L.csv', header=None)
edges = edges.values
# 读取节点特征数据
features = []
labels = []
for i in range(1, 43):
for j in range(37):
image_path = f'C:\Users\jh\Desktop\data\input\images\{i}.png_{j}.png'
image = Image.open(image_path).convert('RGB')
transform = transforms.Compose([transforms.Resize((40, 40)), transforms.ToTensor()])
image_tensor = transform(image)
features.append(image_tensor)
labels_path = f'C:\Users\jh\Desktop\data\input\labels\{i}_{j}.txt'
with open(labels_path, 'r') as file:
label = [int(l) for l in file.readline().strip().split()]
labels.append(label)
x = torch.stack(features)
x = x.view(-1, 3, 40, 40)
# 划分训练集和验证集的掩码
mask_train = torch.zeros(42, 37, dtype=torch.bool)
mask_val = torch.zeros(42, 37, dtype=torch.bool)
for i in range(42):
mask_train[i, :30] = 1
mask_val[i, 30:] = 1
mask_train = mask_train.view(-1)
mask_val = mask_val.view(-1)
# 创建图结构
edge_index = torch.tensor(edges, dtype=torch.long).t().contiguous()
data_list = []
for i in range(42):
data = Data(x=x, edge_index=edge_index)
data.mask_train = mask_train[i*37:(i+1)*37]
data.mask_val = mask_val[i*37:(i+1)*37]
data.y = torch.tensor(labels[i*37:(i+1)*37])
data_list.append(data)
# 创建CNN模型实例,降维至8维
cnn_model = CNN(in_channels=3, out_channels=8)
# 使用CNN模型对节点特征进行降维
with torch.no_grad():
cnn_output = []
for i in range(42):
x_i = x[i*37:(i+1)*37].unsqueeze(1)
x_i = x_i.squeeze(1)
output_i = cnn_model(x_i)
output_i = output_i.view(output_i.size(0), -1)
cnn_output.append(output_i)
cnn_output = torch.cat(cnn_output, dim=0)
# 将降维后的特征加入data对象
for i in range(42):
data_list[i].x = cnn_output[i*37:(i+1)*37]
# 创建GCN模型实例
gcn_model = GCN(in_channels=8, out_channels=8)
# 定义多标签分类的损失函数和优化器
criterion = nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(gcn_model.parameters(), lr=0.0008)
# 训练模型
num_epochs = 5000
for epoch in range(num_epochs):
gcn_model.train()
total_loss = 0
for data in data_list:
optimizer.zero_grad()
out = gcn_model(data)
labels_batch = F.one_hot(data.y, num_classes=8).float()
loss = criterion(out, labels_batch)
loss.backward()
optimizer.step()
total_loss += loss.item()
avg_loss = total_loss / len(data_list)
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {avg_loss:.6f}')
# 在验证集上评估模型
gcn_model.eval()
with torch.no_grad():
total_correct = 0
total_samples = 0
for data in data_list:
out = gcn_model(data)
labels_batch = F.one_hot(data.y, num_classes=8).float()
predicted = (out > 0).float() # 使用阈值 0 进行二分类
total_correct += (predicted == labels_batch).sum().item()
total_samples += labels_batch.size(0) * labels_batch.size(1)
accuracy = total_correct / total_samples
print(f'Validation Accuracy: {accuracy:.4f}')
优化建议
- 数据预处理: 可以对图像数据进行更深入的预处理,例如数据增强、归一化等,提升模型的鲁棒性和泛化能力。
- 模型结构: 可以尝试不同的CNN和GCN结构,例如使用残差网络、注意力机制等,探索更优的模型架构。
- 超参数优化: 可以使用网格搜索、贝叶斯优化等方法对学习率、dropout率等超参数进行优化,找到更适合当前任务的超参数组合。
- 评估指标: 可以使用更全面的评估指标,例如F1分数、召回率等,更全面地评估模型的性能。
- 可视化: 可以使用可视化工具对模型的训练过程、预测结果等进行可视化分析,帮助理解模型的运行机制和改进方向。
总结
本文介绍了如何使用CNN-GCN模型进行多标签节点标签预测,并提供了详细的代码实现和优化建议。希望本文能够为相关研究人员提供参考。
原文地址: https://www.cveoy.top/t/topic/pk14 著作权归作者所有。请勿转载和采集!