以下是一个示例代码,演示了如何从头开始训练一个卷积神经网络来实现猫狗分类,以及如何使用数据增强来提高其准确率。

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader

# 设置随机种子
torch.manual_seed(42)

# 定义数据预处理的转换
transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 加载训练集和测试集
train_dataset = ImageFolder(root='train/', transform=transform)
test_dataset = ImageFolder(root='test/', transform=transform)

# 创建数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=32, shuffle=False)

# 定义卷积神经网络模型
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.fc = nn.Linear(32 * 8 * 8, 2)
    
    def forward(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.maxpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        return x

# 创建模型实例
model = CNN()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 训练网络
for epoch in range(10):
    running_loss = 0.0
    for i, data in enumerate(train_loader):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 100 == 99:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
            running_loss = 0.0

# 测试网络
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        images, labels = data
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('准确率: %.2f %%' % (100 * correct / total))

接下来是使用数据增强的方法来提高准确率的示例代码:

# 修改数据预处理的转换
transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(10),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 重新加载训练集和测试集
train_dataset = ImageFolder(root='train/', transform=transform)
test_dataset = ImageFolder(root='test/', transform=transform)

# 创建新的数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=32, shuffle=False)

# 接下来的代码与上面相同,重新训练和测试网络
...

使用预训练的卷积神经网络并采用数据增强的示例代码:

# 加载预训练的模型
model = torchvision.models.resnet18(pretrained=True)

# 冻结预训练模型的参数
for param in model.parameters():
    param.requires_grad = False

# 替换分类器层
model.fc = nn.Linear(512, 2)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.fc.parameters(), lr=0.001, momentum=0.9)

# 修改数据预处理的转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(10),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 重新加载训练集和测试集
train_dataset = ImageFolder(root='train/', transform=transform)
test_dataset = ImageFolder(root='test/', transform=transform)

# 创建新的数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=32, shuffle=False)

# 训练和测试网络
...

最后是微调模型并采用数据增强的示例代码:

# 解冻预训练模型的参数
for param in model.layer4.parameters():
    param.requires_grad = True

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# 修改数据预处理的转换
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(10),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

# 重新加载训练集和测试集
train_dataset = ImageFolder(root='train/', transform=transform)
test_dataset = ImageFolder(root='test/', transform=transform)

# 创建新的数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=32, shuffle=False)

# 训练和测试网络
...

请注意,这只是一个示例代码,实际应用中可能需要根据具体情况进行修改和调整。

猫狗分类:小型数据集上的卷积神经网络训练与优化

原文地址: https://www.cveoy.top/t/topic/peH7 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录