以下是使用PyTorch实现BN-LSTM模型的示例代码:

import torch
import torch.nn as nn
import torch.nn.functional as F

class BNLSTM(nn.Module):
    def __init__(self, input_size, hidden_size, num_layers, bidirectional=True):
        super(BNLSTM, self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.num_directions = 2 if bidirectional else 1
        
        self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=bidirectional)
        self.bn = nn.BatchNorm1d(hidden_size * self.num_directions)
        
    def forward(self, input):
        # Initialize hidden state and cell state
        h0 = torch.zeros(self.num_layers * self.num_directions, input.size(0), self.hidden_size).to(input.device)
        c0 = torch.zeros(self.num_layers * self.num_directions, input.size(0), self.hidden_size).to(input.device)
        
        # Forward pass through LSTM
        output, _ = self.lstm(input, (h0, c0))
        
        # Apply batch normalization
        output = output.transpose(1, 2)  # Reshape from (batch_size, seq_len, hidden_size*num_directions) to (batch_size, hidden_size*num_directions, seq_len)
        output = self.bn(output)
        output = output.transpose(1, 2)  # Reshape back to (batch_size, seq_len, hidden_size*num_directions)
        
        return output

在上面的代码中,我们定义了一个名为BNLSTM的PyTorch模型。它接受输入大小、隐藏大小、层数和是否双向作为参数。在__init__方法中,我们创建了一个LSTM层和一个批归一化层。在forward方法中,我们首先初始化隐藏状态和细胞状态,然后通过LSTM层进行前向传播。最后,我们将输出进行批归一化处理,并返回结果。

请注意,此代码只是BN-LSTM模型的简单实现示例,您可以根据自己的需求进行修改和扩展。

PyTorch实现BN-LSTM模型:代码示例与详解

原文地址: https://www.cveoy.top/t/topic/pcOM 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录