NHANES 数据集描述性统计分析 - 纤维化分组比较
NHANES 数据集描述性统计分析 - 纤维化分组比较
本页面展示了来自NHANES数据集的描述性统计分析结果,包括年龄、性别、种族、教育水平、吸烟状况、饮酒状况、BMI、腰围、高血压、糖尿病指标、ALT、HDL、TG、PLT、WBC等指标。数据根据纤维化分组进行比较,并显示了每个组别的统计结果和p值。
总体描述性统计
tbl.all <- tbl_svysummary(NHANES_design,
include = c(RIDAGEYR, sex.group, race.group, DMDEDUC2, smoke.group, drink.group,bmi.group, BMXWAIST, hyper, diabetes.index, LBXSATSI, LBDHDD, LBXTR, LBXPLTSI, LBXWBCSI, LBXIN, LBDGLUSI, ms.group, homa.ir,homa.ir.quantile,tyg,LUXCAPM,wb,cap.302.group),
label = list(RIDAGEYR ~ 'Age (years)', race.group ~ 'Race', DMDEDUC2 ~ 'Education level', LBXSATSI ~ 'ALT', LBDHDD ~ 'HDL', LBXTR ~ 'TG', LBXPLTSI ~ 'PLT', LBXWBCSI ~ 'WBC'),
statistic = list(all_continuous() ~ "{median} ({p25}, {p75})",
all_categorical() ~ "{n_unweighted} ({p}%)“),
sort = list(RIDAGEYR ~ "frequency", race.group ~ "frequency", DMDEDUC2 ~ "alphanumeric", smoke.group ~ "frequency", bmi.group ~ "alphanumeric", hyper ~ "frequency", diabetes.index ~ "frequency", LBXSATSI ~ "frequency", LBDHDD ~ "frequency", LBXTR ~ "frequency", LBXPLTSI ~ "frequency", LBXWBCSI ~ "frequency", LBXIN ~ "frequency", LBDGLUSI ~ "frequency", homa.ir ~ "frequency", lsm.8.2.group ~ "frequency", homa.ir.quantile ~ "alphanumeric"),
missing = 'no') %>%
add_n(statistic = "{N_nonmiss_unweighted}", # 默认为 "{n}, {N_miss_unweighted}"
col_label = "**N**",
footnote = TRUE)
纤维化分组描述性统计
纤维化分组 1
#tab.1(lsm.7.group)
tbl.1 <- tbl_svysummary(NHANES_design,
by = lsm.7.group,
include = c(RIDAGEYR, sex.group, race.group, DMDEDUC2, smoke.group, drink.group,bmi.group, BMXWAIST, hyper, diabetes.index, LBXSATSI, LBDHDD, LBXTR, LBXPLTSI, LBXWBCSI, LBXIN, LBDGLUSI, ms.group, homa.ir,homa.ir.quantile,tyg,LUXCAPM,wb,cap.302.group),
label = list(RIDAGEYR ~ 'Age (years)', race.group ~ 'Race', DMDEDUC2 ~ 'Education level', LBXSATSI ~ 'ALT', LBDHDD ~ 'HDL', LBXTR ~ 'TG', LBXPLTSI ~ 'PLT', LBXWBCSI ~ 'WBC'),
statistic = list(all_continuous() ~ "{median} ({p25}, {p75})",
all_categorical() ~ "{n_unweighted} ({p}%)“),
sort = list(RIDAGEYR ~ "frequency", race.group ~ "frequency", DMDEDUC2 ~ "alphanumeric", smoke.group ~ "frequency", bmi.group ~ "alphanumeric", hyper ~ "frequency", diabetes.index ~ "frequency", LBXSATSI ~ "frequency", LBDHDD ~ "frequency", LBXTR ~ "frequency", LBXPLTSI ~ "frequency", LBXWBCSI ~ "frequency", LBXIN ~ "frequency", LBDGLUSI ~ "frequency", homa.ir ~ "frequency", lsm.8.2.group ~ "frequency", homa.ir.quantile ~ "alphanumeric"),
missing = 'no') %>%
modify_stat(p ~ format(p, digits = 3))
纤维化分组 2
#tab.2(lsm.8.2.group)
tbl.2 <- tbl_svysummary(NHANES_design,
by = lsm.8.2.group,
include = c(RIDAGEYR, sex.group, race.group, DMDEDUC2, smoke.group, drink.group,bmi.group, BMXWAIST, hyper, diabetes.index, LBXSATSI, LBDHDD, LBXTR, LBXPLTSI, LBXWBCSI, LBXIN, LBDGLUSI, ms.group, homa.ir,homa.ir.quantile,tyg,LUXCAPM,wb,cap.302.group),
label = list(RIDAGEYR ~ 'Age (years)', race.group ~ 'Race', DMDEDUC2 ~ 'Education level', LBXSATSI ~ 'ALT', LBDHDD ~ 'HDL', LBXTR ~ 'TG', LBXPLTSI ~ 'PLT', LBXWBCSI ~ 'WBC'),
statistic = list(all_continuous() ~ "{median} ({p25}, {p75})",
all_categorical() ~ "{n_unweighted} ({p}%)“),
sort = list(RIDAGEYR ~ "frequency", race.group ~ "frequency", DMDEDUC2 ~ "alphanumeric", smoke.group ~ "frequency", bmi.group ~ "alphanumeric", hyper ~ "frequency", diabetes.index ~ "frequency", LBXSATSI ~ "frequency", LBDHDD ~ "frequency", LBXTR ~ "frequency", LBXPLTSI ~ "frequency", LBXWBCSI ~ "frequency", LBXIN ~ "frequency", LBDGLUSI ~ "frequency", homa.ir ~ "frequency", lsm.8.2.group ~ "frequency", homa.ir.quantile ~ "alphanumeric"),
missing = 'no') %>%
modify_stat(p ~ format(p, digits = 3))
合并结果
#合并
tab1_merge<-tbl_merge(
tbls = list(tbl.all, tbl.1, tbl.2),
tab_spanner = c("**Overall**", "**Fibrosis**", "**Significal fibrosis**"))%>%
modify_header(
all_stat_cols() ~ "**{level}**, N = {n_unweighted} ({style_percent(p)}%)“) %>%
bold_labels()
结论
通过对NHANES数据集进行描述性统计分析,我们可以观察到不同纤维化分组之间在年龄、性别、种族、教育水平、吸烟状况、饮酒状况、BMI、腰围、高血压、糖尿病指标、ALT、HDL、TG、PLT、WBC等指标上的差异。这些差异可能反映了纤维化与相关因素之间的关系。
注:
- 本页面使用R语言和
gtsummary包进行数据分析和可视化。 lsm.7.group和lsm.8.2.group分别代表两种不同的纤维化分组。modify_stat()函数用于修改p值的格式,将其保留三位小数。tbl_merge()函数用于合并不同分组的统计结果。modify_header()函数用于修改表格标题。bold_labels()函数用于将表格标签设置为粗体。
数据来源:
更多信息:
联系我们:
- 邮箱地址
- [网站地址](https://www.yourwebsite.com
原文地址: https://www.cveoy.top/t/topic/ozZ 著作权归作者所有。请勿转载和采集!