Python KNN 文本分类实现:代码、数据集、停用词表
由于缺乏具体的数据集,以下代码仅提供一个基本的KNN文本分类实现框架,需要读者自行准备数据集和停用词表。
首先,读取并处理数据集,包括数据预处理和特征提取:
import pandas as pd
import numpy as np
import jieba
import re
# 读取数据集
df = pd.read_csv('data.csv')
# 数据预处理
df['content'] = df['content'].apply(lambda x: re.sub('[
]', '', x)) # 去除换行符等特殊字符
df['content'] = df['content'].apply(lambda x: re.sub('[^一-龥]', '', x)) # 去除非中文字符
df['content'] = df['content'].apply(lambda x: jieba.lcut(x)) # 分词
# 特征提取
all_words = []
for content in df['content']:
all_words.extend(content)
all_words = list(set(all_words))
然后,根据停用词表去除无意义的词语:
# 读取停用词表
with open('stopwords.txt', 'r', encoding='utf-8') as f:
stopwords = f.read().split('
')
# 去除停用词
def remove_stopwords(words):
return [word for word in words if word not in stopwords]
df['content'] = df['content'].apply(remove_stopwords)
接下来,将文本转化为向量表示,采用TF-IDF算法:
# 计算TF-IDF值
def calculate_tfidf(word, content, contents):
tf = content.count(word) / len(content)
idf = np.log(len(contents) / (sum([1 for content in contents if word in content]) + 1))
return tf * idf
# 构建TF-IDF矩阵
tfidf_matrix = np.zeros((len(df), len(all_words)))
for i in range(len(df)):
content = df.loc[i, 'content']
for j in range(len(all_words)):
word = all_words[j]
tfidf_matrix[i, j] = calculate_tfidf(word, content, df['content'])
最后,采用KNN算法进行文本分类:
# KNN算法
def knn_classify(x, k, train_x, train_y):
distances = np.sqrt(np.sum((train_x - x) ** 2, axis=1))
nearest = distances.argsort()[:k]
top_k_y = [train_y[i] for i in nearest]
return max(top_k_y, key=top_k_y.count)
# 分割数据集为训练集和测试集
train_size = int(len(df) * 0.8)
train_x = tfidf_matrix[:train_size]
train_y = df['label'][:train_size]
test_x = tfidf_matrix[train_size:]
test_y = df['label'][train_size:]
# 进行文本分类
k = 5 # KNN中的k值
correct = 0
for i in range(len(test_x)):
pred_y = knn_classify(test_x[i], k, train_x, train_y)
if pred_y == test_y[train_size+i]:
correct += 1
accuracy = correct / len(test_x) # 分类准确率
上述代码中,变量accuracy为分类准确率,可以根据实际情况进行调整和优化。另外,特征选择和模型解释性可以通过调整TF-IDF算法中的参数来实现。算法效率可以通过优化KNN算法和使用更高效的数据结构来实现。
原文地址: https://www.cveoy.top/t/topic/ovVC 著作权归作者所有。请勿转载和采集!