数据预处理和线性回归模型训练与测试评估GUI工具
import tkinter as tk from tkinter import filedialog import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score
GUI界面
root = tk.Tk() root.title('数据预处理和模型测试') root.geometry('300x250')
文件选择函数
def select_file(): filepath = filedialog.askopenfilename() file_entry.delete(0, tk.END) file_entry.insert(0, filepath)
数据读取和预处理函数
def process_data(): # 读入数据集 filepath = file_entry.get() df = pd.read_csv(filepath)
# 数据清洗
df.dropna(inplace=True)
# 数据标准化
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df)
# 数据拆分为训练集和测试集
X = scaled_data[:,:-1]
y = scaled_data[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 模型训练和测试评估
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
r2 = r2_score(y_test, y_pred)
# 输出预处理后的数据和测试结果
output_text.delete('1.0', tk.END)
output_text.insert(tk.END, '预处理后的数据:\n'+str(scaled_data)+'\n\n测试结果:\nR2 Score: '+str(r2))
文件选择按钮和输入框
file_label = tk.Label(root, text='请选择数据文件:') file_label.pack() file_entry = tk.Entry(root, width=30) file_entry.pack() file_button = tk.Button(root, text='选择', command=select_file) file_button.pack()
数据处理按钮和输出框
process_button = tk.Button(root, text='处理数据并测试', command=process_data) process_button.pack() output_label = tk.Label(root, text='预处理后的数据和测试结果:') output_label.pack() output_text = tk.Text(root, width=30, height=12) output_text.pack()
root.mainloop()
原文地址: https://www.cveoy.top/t/topic/ojOi 著作权归作者所有。请勿转载和采集!