文本自动摘要技术:缓解信息过载的利器
随着大数据时代的到来,人们面对越来越多的信息无法获取自己所关心的信息,无法关注一篇文章的所有内容,只需要关注文章的核心要义,文本自动摘要技术可以一定程度上缓解这个问题。/n/n方法:采用基于传统机器学习的抽取式文本摘要生成方法;/n/n结果:针对任意一条网络文本数据,可获取对应的摘要信息。/n/n## Python 代码示例/n/npython/n# 导入必要的库/nimport re/nimport math/nfrom collections import Counter/n/n# 定义一个函数,用于对文本进行预处理/ndef preprocess_text(text):/n # 将文本中的标点符号、数字、空格等非文字字符替换为空格/n text = re.sub(r'[^/w/s]','',text)/n text = re.sub(r'/d+','',text)/n text = re.sub(r'/s+',' ',text)/n # 将文本转换为小写字母/n text = text.lower()/n return text/n/n# 定义一个函数,用于计算TF-IDF权重/ndef compute_tf_idf(text):/n # 对文本进行预处理/n text = preprocess_text(text)/n # 将文本分词/n words = text.split()/n # 计算每个单词在文本中出现的次数/n word_counts = Counter(words)/n # 计算文本中单词的总数/n total_words = len(words)/n # 计算每个单词在文本中出现的频率/n word_freqs = {word: count/total_words for word, count in word_counts.items()}/n # 定义一个空字典,用于存储每个单词的TF-IDF权重/n tf_idf = {}/n # 计算每个单词的TF-IDF权重/n for word in word_freqs:/n # 计算单词在所有文本中出现的次数/n word_in_docs = sum(1 for doc in documents if word in doc)/n # 计算单词的IDF值/n idf = math.log(len(documents)/word_in_docs)/n # 计算单词的TF-IDF权重/n tf_idf[word] = word_freqs[word] * idf/n return tf_idf/n/n# 定义一个函数,用于生成文本摘要/ndef generate_summary(text, num_sentences=3):/n # 对文本进行预处理/n text = preprocess_text(text)/n # 将文本分句/n sentences = re.split(r'(?<!/w/./w.)(?<![A-Z][a-z]/.)(?<=/.|/?)/s', text)/n # 计算每个句子的TF-IDF权重/n sentence_scores = {}/n for sentence in sentences:/n # 将句子分词/n words = sentence.split()/n # 计算句子中单词的TF-IDF权重之和/n score = sum(tf_idf[word] for word in words if word in tf_idf)/n # 存储每个句子的TF-IDF权重/n sentence_scores[sentence] = score/n # 获取TF-IDF权重最高的前num_sentences个句子/n summary_sentences = sorted(sentence_scores, key=sentence_scores.get, reverse=True)[:num_sentences]/n # 将摘要句子按照原文本的顺序重新排序/n summary_sentences = sorted(summary_sentences, key=lambda sentence: sentences.index(sentence))/n # 将摘要句子合并成一个字符串/n summary = ' '.join(summary_sentences)/n return summary/n/n# 定义一个包含多篇文本的列表/ndocuments = [/n 'Python is a popular programming language. It was created in 1991 by Guido van Rossum.',/n 'Python is used for web development, data analysis, artificial intelligence, and more.',/n 'Python is easy to learn and has a simple syntax, making it a popular choice for beginners.',/n 'Python is open-source software, which means it is free to use and distribute.',/n 'Python has a large and active community, which provides support and contributes to its development.'/n]/n/n# 计算TF-IDF权重/ntf_idf = compute_tf_idf(' '.join(documents))/n/n# 生成文本摘要/nsummary = generate_summary(' '.join(documents))/nprint(summary)/n/n/n## 总结/n/n文本自动摘要技术能够有效地提取文章的核心内容,为用户提供更便捷的信息获取方式,是应对信息过载的重要工具。未来,随着技术的不断发展,文本自动摘要技术将会更加成熟,为人们提供更加精准、高效的信息服务。
原文地址: https://www.cveoy.top/t/topic/oHJq 著作权归作者所有。请勿转载和采集!