用Lasagne包实现DBN分类:Python代码示例
以下是使用Lasagne包实现DBN分类的Python代码示例:
import numpy as np
import theano
import theano.tensor as T
import lasagne
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
# 加载数据集
X, y = fetch_openml('mnist_784', version=1, return_X_y=True, as_frame=False)
X = X / 255.0 # 将像素值缩放到0-1之间
y = y.astype(np.int32)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义DBN模型
class DBN(object):
def __init__(self, num_features, hidden_units, num_classes):
self.num_features = num_features
self.hidden_units = hidden_units
self.num_classes = num_classes
self.sigmoid_layers = []
self.rbm_layers = []
self.params = []
# 定义RBM层
for i, output_size in enumerate(hidden_units):
if i == 0:
input_size = num_features
else:
input_size = hidden_units[i-1]
rbm_layer = RBM(input_size, output_size)
self.rbm_layers.append(rbm_layer)
self.params.extend(rbm_layer.params)
sigmoid_layer = lasagne.layers.DenseLayer(
lasagne.layers.InputLayer((None, input_size)),
num_units=output_size,
nonlinearity=lasagne.nonlinearities.sigmoid
)
self.sigmoid_layers.append(sigmoid_layer)
# 定义输出层
self.output_layer = lasagne.layers.DenseLayer(
lasagne.layers.InputLayer((None, hidden_units[-1])),
num_units=num_classes,
nonlinearity=lasagne.nonlinearities.softmax
)
self.params.extend(self.output_layer.params)
def pretrain(self, X_train, batch_size=10, learning_rate=0.1, num_epochs=10):
index = T.lscalar('index')
x = T.matrix('x')
for rbm in self.rbm_layers:
cost, updates = rbm.get_cost_updates(x, learning_rate)
train_rbm = theano.function(
inputs=[index],
outputs=cost,
updates=updates,
givens={
x: X_train[index * batch_size: (index + 1) * batch_size]
}
)
# 进行RBM预训练
num_batches = X_train.shape[0] // batch_size
for epoch in range(num_epochs):
for batch_index in range(num_batches):
train_rbm(batch_index)
def finetune(self, X_train, y_train, batch_size=10, learning_rate=0.1, num_epochs=10):
index = T.lscalar('index')
x = T.matrix('x')
y = T.ivector('y')
# 定义输出层的代价函数和更新规则
prediction = lasagne.layers.get_output(self.output_layer, x)
cost = lasagne.objectives.categorical_crossentropy(prediction, y)
cost = cost.mean()
updates = lasagne.updates.nesterov_momentum(cost, self.params, learning_rate)
# 定义训练函数
train_fn = theano.function(
inputs=[index],
outputs=cost,
updates=updates,
givens={
x: X_train[index * batch_size: (index + 1) * batch_size],
y: y_train[index * batch_size: (index + 1) * batch_size]
}
)
# 进行DBN微调
num_batches = X_train.shape[0] // batch_size
for epoch in range(num_epochs):
for batch_index in range(num_batches):
train_fn(batch_index)
def predict(self, X_test):
x = T.matrix('x')
prediction = lasagne.layers.get_output(self.output_layer, x, deterministic=True)
predict_fn = theano.function([x], T.argmax(prediction, axis=1))
return predict_fn(X_test)
# 定义RBM层
class RBM(object):
def __init__(self, input_size, output_size):
self.input_size = input_size
self.output_size = output_size
self.W = theano.shared(
value=np.zeros((input_size, output_size), dtype=theano.config.floatX),
name='W',
borrow=True
)
self.b_h = theano.shared(
value=np.zeros((output_size,), dtype=theano.config.floatX),
name='b_h',
borrow=True
)
self.b_v = theano.shared(
value=np.zeros((input_size,), dtype=theano.config.floatX),
name='b_v',
borrow=True
)
self.params = [self.W, self.b_h, self.b_v]
def propup(self, x):
return T.nnet.sigmoid(T.dot(x, self.W) + self.b_h)
def propdown(self, x):
return T.nnet.sigmoid(T.dot(x, self.W.T) + self.b_v)
def sample_h_given_v(self, v0_sample):
h1_mean = self.propup(v0_sample)
h1_sample = self.theano_rng.binomial(size=h1_mean.shape, n=1, p=h1_mean, dtype=theano.config.floatX)
return h1_mean, h1_sample
def sample_v_given_h(self, h0_sample):
v1_mean = self.propdown(h0_sample)
v1_sample = self.theano_rng.binomial(size=v1_mean.shape, n=1, p=v1_mean, dtype=theano.config.floatX)
return v1_mean, v1_sample
def get_cost_updates(self, x, learning_rate):
h0_mean, h0_sample = self.sample_h_given_v(x)
v1_mean, v1_sample = self.sample_v_given_h(h0_sample)
h1_mean, h1_sample = self.sample_h_given_v(v1_sample)
# 计算代价函数
cost = T.mean(self.free_energy(x)) - T.mean(self.free_energy(v1_sample))
# 计算参数更新规则
gparams = T.grad(cost, self.params, consider_constant=[v1_sample])
updates = [
(param, param - learning_rate * gparam) for param, gparam in zip(self.params, gparams)
]
return cost, updates
def free_energy(self, v_sample):
wx_b = T.dot(v_sample, self.W) + self.b_h
vbias_term = T.dot(v_sample, self.b_v)
hidden_term = T.sum(T.log(1 + T.exp(wx_b)), axis=1)
return -hidden_term - vbias_term
# 定义DBN分类器
num_features = X.shape[1]
hidden_units = [500, 500] # 隐藏层单元数
num_classes = len(np.unique(y))
dbn = DBN(num_features, hidden_units, num_classes)
# 进行预训练
dbn.pretrain(X_train)
# 进行微调
dbn.finetune(X_train, y_train)
# 进行预测
y_pred = dbn.predict(X_test)
# 计算准确率
accuracy = np.mean(y_pred == y_test)
print('Accuracy:', accuracy)
请注意,这只是一个简单的示例代码,可能需要根据具体情况进行修改和优化。此外,这个示例中使用的是MNIST数据集,如果要使用其他数据集,请根据数据集的特点进行相应的调整。
原文地址: https://www.cveoy.top/t/topic/o8RE 著作权归作者所有。请勿转载和采集!