Python实现简单密度聚类算法
下面是一个使用Python实现的简单密度聚类算法的示例代码:
import numpy as np
from sklearn.metrics.pairwise import euclidean_distances
def density_clustering(data, epsilon, min_pts):
# 初始化聚类标记
labels = np.zeros(len(data))
cluster_id = 0
for i in range(len(data)):
if labels[i] != 0:
continue
# 找到data[i]的邻居点
neighbors = find_neighbors(data, i, epsilon)
# 如果邻居点数量小于min_pts,则将data[i]标记为噪声点
if len(neighbors) < min_pts:
labels[i] = -1
else:
# 对密度可达的点进行聚类
cluster_id += 1
expand_cluster(data, labels, i, neighbors, cluster_id, epsilon, min_pts)
return labels
def find_neighbors(data, idx, epsilon):
# 计算data[idx]与其他点之间的欧式距离
distances = euclidean_distances(data[idx].reshape(1, -1), data)[0]
# 返回与data[idx]距离小于epsilon的点的索引
return np.where(distances < epsilon)[0]
def expand_cluster(data, labels, idx, neighbors, cluster_id, epsilon, min_pts):
# 将data[idx]标记为当前聚类
labels[idx] = cluster_id
i = 0
while i < len(neighbors):
neighbor_idx = neighbors[i]
# 如果neighbor_idx是噪声点,则将其标记为当前聚类
if labels[neighbor_idx] == -1:
labels[neighbor_idx] = cluster_id
# 如果neighbor_idx还未被访问过,则标记为当前聚类,并找出其邻居点
elif labels[neighbor_idx] == 0:
labels[neighbor_idx] = cluster_id
new_neighbors = find_neighbors(data, neighbor_idx, epsilon)
# 如果neighbor_idx的邻居点数量大于等于min_pts,则将其邻居点添加到neighbors中
if len(new_neighbors) >= min_pts:
neighbors = np.concatenate((neighbors, new_neighbors))
i += 1
# 示例用法
data = np.array([[1, 1], [1.5, 2], [3, 3], [4, 4], [4.5, 5]])
epsilon = 1
min_pts = 2
labels = density_clustering(data, epsilon, min_pts)
print(labels)
该代码实现了一个简单的密度聚类算法,其中density_clustering函数是主要的聚类函数,它接收数据集、邻域半径epsilon和最小邻居点数min_pts作为输入,并返回每个数据点的聚类标签。find_neighbors函数用于找到一个数据点的邻居点,expand_cluster函数用于扩展一个聚类。在示例用法中,我们使用一个简单的二维数据集进行聚类,并打印出每个数据点的聚类标签。
原文地址: https://www.cveoy.top/t/topic/o5wz 著作权归作者所有。请勿转载和采集!