SEGAN 音频降噪模型代码详解及优化建议
SEGAN 音频降噪模型代码详解及优化建议
本文提供 SEGAN 音频降噪模型的 PyTorch 代码实现,并结合降噪效果分析,提出音频音量减小和高频噪声增加的优化建议,帮助用户更好地理解和改进 SEGAN 模型。
import torch
from dataset import SEGAN_Dataset
from hparams import hparams
from model import Generator, Discriminator
import os
from torch.utils.data import Dataset,DataLoader
import torch.nn as nn
from torch.autograd import Variable
if __name__ == "__main__":
# 定义device
device = torch.device("cuda:1")
# 导入参数
para = hparams()
# 创建数据保存文件夹
os.makedirs(para.save_path,exist_ok=True)
# 创建生成器
generator = Generator()
generator = generator.to(device)
# 创建鉴别器
discriminator = Discriminator()
discriminator = discriminator.to(device)
# # 创建G 的优化器
# m_G_optimizer = torch.optim.RMSprop(m_G.parameters(), lr=para.lr_G)
# # 创建D 的优化器
# d_optimizer = torch.optim.RMSprop(m_D.parameters(), lr=para.lr_D)
# optimizers
g_optimizer = torch.optim.RMSprop(generator.parameters(), lr=0.0001)
d_optimizer = torch.optim.RMSprop(discriminator.parameters(), lr=0.0001)
# 定义数据集
m_dataset = SEGAN_Dataset(para)
# 获取ref-batch
ref_batch = m_dataset.ref_batch(para.ref_batch_size)
ref_batch = Variable(ref_batch)
ref_batch = ref_batch.to(device)
# 定义dataloader
m_dataloader = DataLoader(m_dataset,batch_size = para.batch_size,shuffle = True, num_workers = 8)
loss_d_all =0
loss_g_all =0
n_step =0
for epoch in range(para.n_epoch):
for i_batch, sample_batch in enumerate(m_dataloader):
batch_clean = sample_batch[0]
batch_noisy = sample_batch[1]
batch_clean = Variable(batch_clean)
batch_noisy = Variable(batch_noisy)
batch_clean = batch_clean.to(device)
batch_noisy = batch_noisy.to(device)
# print(batch_clean.size())
# print(batch_noisy.size())
batch_z = nn.init.normal(torch.Tensor(batch_clean.size(0), para.size_z[0], para.size_z[1]))
batch_z = Variable(batch_z)
batch_z = batch_z.to(device)
discriminator.zero_grad()
train_batch = Variable(torch.cat([batch_clean,batch_noisy],axis=1))
# train_batch = torch.cat([batch_clean,batch_noisy],axis=1)
outputs = discriminator(train_batch, ref_batch)
clean_loss = torch.mean((outputs - 1.0) ** 2) # L2 loss - we want them all to be 1
# clean_loss.backward()
# TRAIN D to recognize generated audio as noisy
generated_outputs = generator(batch_noisy, batch_z)
outputs = discriminator(torch.cat((generated_outputs, batch_noisy), dim=1), ref_batch)
noisy_loss = torch.mean(outputs ** 2) # L2 loss - we want them all to be 0
# noisy_loss.backward()
d_loss = clean_loss + noisy_loss
d_loss.backward()
d_optimizer.step() # update parameters
# TRAIN G so that D recognizes G(z) as real
generator.zero_grad()
generated_outputs = generator(batch_noisy, batch_z)
gen_noise_pair = torch.cat((generated_outputs, batch_noisy), dim=1)
outputs = discriminator(gen_noise_pair, ref_batch)
g_loss_ = 0.5 * torch.mean((outputs - 1.0) ** 2)
# L1 loss between generated output and clean sample
l1_dist = torch.abs(torch.add(generated_outputs, torch.neg(batch_clean)))
g_cond_loss = 100 * torch.mean(l1_dist) # conditional loss
g_loss = g_loss_ + g_cond_loss
# backprop + optimize
g_loss.backward()
g_optimizer.step()
# # 更新参数 D
# m_D.zero_grad()
# # 计算真实数据的 d_loss
# batch_train_real = torch.cat((batch_clean,batch_noisy),axis=1)
# real_d_out = m_D(batch_train_real,batch_ref)
# d_real_loss = torch.mean((real_d_out-1.0)**2)
# d_real_loss.backward()
# # 计算虚假数据的 d_loss
# batch_g = m_G(batch_noisy,batch_z)
# batch_train_fake = torch.cat((batch_g,batch_noisy),axis=1)
# fake_d_out = m_D(batch_train_fake,batch_ref)
# d_fake_loss = torch.mean(fake_d_out**2)
# d_fake_loss.backward()
# d_loss = d_real_loss + d_fake_loss
# # d_loss.backward()
# m_D_optimizer.step()
# # 更新参数G
# m_G.zero_grad()
# batch_g = m_G(batch_noisy,batch_z)
# batch_train_fake = torch.cat((batch_g,batch_noisy),axis=1)
# fake_d_out = m_D(batch_train_fake,batch_ref)
# # D 将生成语音认作真实语音
# g_loss_1 = 0.5*torch.mean((fake_d_out-1.0)**2)
# # 生成语音和真实语音的L1距离最小
# L1_dis = torch.abs(torc
音频音量减小和高频噪声增加的优化建议
1. 音频音量减小:
- 原因: 去噪方法可能不够有效,导致一些原本有用的信号也被去除了。
- 优化建议:
- 调整模型参数: 例如调整 Generator 和 Discriminator 的网络结构、激活函数、损失函数等参数。
- 使用更好的去噪算法: 例如使用更先进的降噪算法,例如基于深度学习的降噪算法或基于信号处理的降噪算法。
- 增加训练数据: 使用更多包含不同类型噪声和不同音频内容的训练数据来训练模型,以提高模型的泛化能力。
2. 高频噪声增加:
- 原因: 模型过度拟合了训练数据中的高频噪声,不能很好地泛化到其他数据。
- 优化建议:
- 增加正则化项: 例如在损失函数中添加 L1 或 L2 正则化项,以避免模型过度拟合。
- 使用更多的训练数据: 使用更多包含不同类型噪声和不同音频内容的训练数据来训练模型,以提高模型的泛化能力。
- 添加一些噪声数据来训练模型: 在训练数据中添加一些人工噪声数据,以提高模型对噪声的鲁棒性。
总结
SEGAN 模型在音频降噪方面具有良好的效果,但其性能也取决于模型的训练和参数选择。通过分析降噪效果,并根据具体情况进行调整和尝试,可以进一步提高模型的性能,获得更好的降噪效果。
注意: 以上代码仅供参考,需要根据具体情况进行修改和优化。同时,建议使用更专业的音频处理库来进行音频降噪,例如 Librosa 或 PyAudio,以获得更好的效果。
原文地址: https://www.cveoy.top/t/topic/nvVn 著作权归作者所有。请勿转载和采集!