Audio Enhancement with Generative Adversarial Networks (GANs)
import argparse import os
import torch import torch.nn as nn from scipy.io import wavfile from torch import optim from torch.autograd import Variable from torch.utils.data import DataLoader from tqdm import tqdm
from data_preprocess import sample_rate from model import Generator, Discriminator from utils import AudioDataset, emphasis
if name == 'main': parser = argparse.ArgumentParser(description='Train Audio Enhancement') parser.add_argument('--batch_size', default=50, type=int, help='train batch size') parser.add_argument('--num_epochs', default=86, type=int, help='train epochs number')
opt = parser.parse_args()
BATCH_SIZE = opt.batch_size
NUM_EPOCHS = opt.num_epochs
# load data
print('loading data...')
train_dataset = AudioDataset(data_type='train')
test_dataset = AudioDataset(data_type='test')
train_data_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
test_data_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)
# generate reference batch
ref_batch = train_dataset.reference_batch(BATCH_SIZE)
# create D and G instances
discriminator = Discriminator()
generator = Generator()
if torch.cuda.is_available():
discriminator.cuda()
generator.cuda()
ref_batch = ref_batch.cuda()
ref_batch = Variable(ref_batch)
print('# generator parameters:', sum(param.numel() for param in generator.parameters()))
print('# discriminator parameters:', sum(param.numel() for param in discriminator.parameters()))
# optimizers
g_optimizer = optim.RMSprop(generator.parameters(), lr=0.0001)
d_optimizer = optim.RMSprop(discriminator.parameters(), lr=0.0001)
for epoch in range(NUM_EPOCHS):
train_bar = tqdm(train_data_loader)
for train_batch, train_clean, train_noisy in train_bar:
# latent vector - normal distribution
z = nn.init.normal(torch.Tensor(train_batch.size(0), 1024, 8))
if torch.cuda.is_available():
train_batch, train_clean, train_noisy = train_batch.cuda(), train_clean.cuda(), train_noisy.cuda()
z = z.cuda()
train_batch, train_clean, train_noisy = Variable(train_batch), Variable(train_clean), Variable(train_noisy)
z = Variable(z)
# TRAIN D to recognize clean audio as clean
# training batch pass
discriminator.zero_grad()
with torch.no_grad():
outputs = discriminator(train_batch, ref_batch)
clean_loss = torch.mean((outputs - 1.0) ** 2) # L2 loss - we want them all to be 1
clean_loss.requires_grad_(True)
loss = torch.zeros(1, requires_grad=True)
clean_loss.backward()
# TRAIN D to recognize generated audio as noisy
generated_outputs = generator(train_noisy, z)
with torch.no_grad():
outputs = discriminator(torch.cat((generated_outputs, train_noisy), dim=1), ref_batch)
noisy_loss = torch.mean(outputs ** 2) # L2 loss - we want them all to be 0
noisy_loss.requires_grad_(True)
noisy_loss.backward()
# d_loss = clean_loss + noisy_loss
d_optimizer.step() # update parameters
# TRAIN G so that D recognizes G(z) as real
generator.zero_grad()
generated_outputs = generator(train_noisy, z)
gen_noise_pair = torch.cat((generated_outputs, train_noisy), dim=1)
with torch.no_grad():
outputs = discriminator(gen_noise_pair, ref_batch)
g_loss_ = 0.5 * torch.mean((outputs - 1.0) ** 2)
# L1 loss between generated output and clean sample
l1_dist = torch.abs(torch.add(generated_outputs, torch.neg(train_clean)))
g_cond_loss = 100 * torch.mean(l1_dist) # conditional loss
g_loss = g_loss_ + g_cond_loss
# backprop + optimize
g_loss.backward()
g_optimizer.step()
train_bar.set_description(
'Epoch {}: d_clean_loss {:.4f}, d_noisy_loss {:.4f}, g_loss {:.4f}, g_conditional_loss {:.4f}'\n .format(epoch + 1, clean_loss.data, noisy_loss.data, g_loss.data, g_cond_loss.data))
# TEST model
test_bar = tqdm(test_data_loader, desc='Test model and save generated audios')
for test_file_names, test_noisy in test_bar:
z = nn.init.normal(torch.Tensor(test_noisy.size(0), 1024, 8))
if torch.cuda.is_available():
test_noisy, z = test_noisy.cuda(), z.cuda()
test_noisy, z = Variable(test_noisy), Variable(z)
fake_speech = generator(test_noisy, z).data.cpu().numpy() # convert to numpy array
fake_speech = emphasis(fake_speech, emph_coeff=0.95, pre=False)
for idx in range(fake_speech.shape[0]):
generated_sample = fake_speech[idx]
file_name = os.path.join('results',\n '{}_e{}.wav'.format(test_file_names[idx].replace('.npy', ''), epoch + 1))
wavfile.write(file_name, sample_rate, generated_sample.T)
# save the model parameters for each epoch
g_path = os.path.join('epochs', 'generator-{}.pkl'.format(epoch + 1))
d_path = os.path.join('epochs', 'discriminator-{}.pkl'.format(epoch + 1))
torch.save(generator.state_dict(), g_path)
torch.save(discriminator.state_dict(), d_path)
原文地址: https://www.cveoy.top/t/topic/npW2 著作权归作者所有。请勿转载和采集!