Kaggle 房价预测:数据预处理和模型训练
import hashlib import os import tarfile import zipfile import requests
#@save DATA_HUB = dict() DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/' def download(name, cache_dir=os.path.join('..', 'data')): #@save '''下载一个DATA_HUB中的文件,返回本地文件名''' assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}" url, sha1_hash = DATA_HUB[name] os.makedirs(cache_dir, exist_ok=True) fname = os.path.join(cache_dir, url.split('/')[-1]) if os.path.exists(fname): sha1 = hashlib.sha1() with open(fname, 'rb') as f: while True: data = f.read(1048576) if not data: break sha1.update(data) if sha1.hexdigest() == sha1_hash: return fname # 命中缓存 print(f'正在从{url}下载{fname}...') r = requests.get(url, stream=True, verify=True) with open(fname, 'wb') as f: f.write(r.content) return fname def download_extract(name, folder=None): #@save '''下载并解压zip/tar文件''' fname = download(name) base_dir = os.path.dirname(fname) data_dir, ext = os.path.splitext(fname) if ext == '.zip': fp = zipfile.ZipFile(fname, 'r') elif ext in ('.tar', '.gz'): fp = tarfile.open(fname, 'r') else: assert False, '只有zip/tar文件可以被解压缩' fp.extractall(base_dir) return os.path.join(base_dir, folder) if folder else data_dir
def download_all(): #@save '''下载DATA_HUB中的所有文件''' for name in DATA_HUB: download(name) import numpy as np import pandas as pd import torch from torch import nn from d2l import torch as d2l DATA_HUB['kaggle_house_train'] = ( #@save DATA_URL + 'kaggle_house_pred_train.csv', '585e9cc93e70b39160e7921475f9bcd7d31219ce')
DATA_HUB['kaggle_house_test'] = ( #@save DATA_URL + 'kaggle_house_pred_test.csv', 'fa19780a7b011d9b009e8bff8e99922a8ee2eb90') train_data = pd.read_csv(download('kaggle_house_train')) test_data = pd.read_csv(download('kaggle_house_test')) print(train_data.shape) print(test_data.shape) print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]]) all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
若无法获得测试数据,则可根据训练数据计算均值和标准差
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index all_features[numeric_features] = all_features[numeric_features].apply( lambda x: (x - x.mean()) / (x.std()))
在标准化数据之后,所有均值消失,因此我们可以将缺失值设置为0
all_features[numeric_features] = all_features[numeric_features].fillna(0)
'Dummy_na=True'将'na'(缺失值)视为有效的特征值,并为其创建指示符特征
all_features = pd.get_dummies(all_features, dummy_na=True) all_features.shape n_train = train_data.shape[0] train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32) test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32) train_labels = torch.tensor( train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32) loss = nn.MSELoss() in_features = train_features.shape[1]
def get_net(): net = nn.Sequential(nn.Linear(in_features,1)) return net def log_rmse(net, features, labels): # 为了在取对数时进一步稳定该值,将小于1的值设置为1 clipped_preds = torch.clamp(net(features), 1, float('inf')) rmse = torch.sqrt(loss(torch.log(clipped_preds), torch.log(labels))) return rmse.item() def train(net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size): train_ls, test_ls = [], [] train_iter = d2l.load_array((train_features, train_labels), batch_size) # 这里使用的是Adam优化算法 optimizer = torch.optim.Adam(net.parameters(), lr = learning_rate, weight_decay = weight_decay) for epoch in range(num_epochs): for X, y in train_iter: optimizer.zero_grad() l = loss(net(X), y) l.backward() optimizer.step() train_ls.append(log_rmse(net, train_features, train_labels)) if test_labels is not None: test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls def get_k_fold_data(k, i, X, y): assert k > 1 fold_size = X.shape[0] // k X_train, y_train = None, None for j in range(k): idx = slice(j * fold_size, (j + 1) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None: X_train, y_train = X_part, y_part else: X_train = torch.cat([X_train, X_part], 0) y_train = torch.cat([y_train, y_part], 0) return X_train, y_train, X_valid, y_valid def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size): train_l_sum, valid_l_sum = 0, 0 for i in range(k): data = get_k_fold_data(k, i, X_train, y_train) net = get_net() train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size) train_l_sum += train_ls[-1] valid_l_sum += valid_ls[-1] if i == 0: d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls], xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs], legend=['train', 'valid'], yscale='log') print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, ' f'验证log rmse{float(valid_ls[-1]):f}') return train_l_sum / k, valid_l_sum / k k, num_epochs, lr, weight_decay, batch_size = 6, 100, 6, 0, 64 train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size) print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, ' f'平均验证log rmse: {float(valid_l):f}') 网络层可以怎么改进增加隐藏的卷积层,给出代码的具体修改内容:房价预测任务并不适合使用卷积神经网络,因为我们的输入是结构化数据而不是图像数据。因此,在这个任务中,我们只需要在全连接层中增加更多的隐藏层或神经元来改进网络。具体地,我们可以修改get_net函数,例如:
def get_net(): net = nn.Sequential(nn.Linear(in_features, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 1)) return net
这里我们增加了3个隐藏层,每个隐藏层的神经元数分别为256、128和64。同时,在每个隐藏层之间加入了ReLU激活函数,以增加模型的非线性能力。
原文地址: https://www.cveoy.top/t/topic/nS1e 著作权归作者所有。请勿转载和采集!