C++ 代码:使用最小生成树连接并可视化 PLY 点云文件
下面是一个简单的 C++ 代码示例,用于读取 PLY 点云文件并计算最小生成树,然后将其可视化。
请注意,本代码示例假定 PLY 文件格式为 ASCII 格式,并且使用了 PCL 库进行点云处理和可视化。
#include <pcl/io/ply_io.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/common/common.h>
#include <pcl/common/transforms.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/passthrough.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/features/normal_3d.h>
#include <pcl/surface/mls.h>
#include <pcl/features/moment_of_inertia_estimation.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/segmentation/region_growing.h>
#include <pcl/segmentation/conditional_euclidean_clustering.h>
#include <pcl/registration/icp.h>
#include <pcl/registration/ndt.h>
#include <pcl/registration/gicp.h>
#include <pcl/registration/transforms.h>
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_registration.h>
#include <pcl/ModelCoefficients.h>
#include <pcl/filters/crop_box.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/search/kdtree.h>
#include <pcl/geometry/polygon_operations.h>
#include <pcl/geometry/triangle_mesh.h>
int main(int argc, char** argv)
{
// Load PLY file
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PLYReader reader;
reader.read('input.ply', *cloud);
// Build KD-Tree
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);
tree->setInputCloud(cloud);
// Initialize variables for minimum spanning tree
std::vector<bool> visited(cloud->points.size(), false);
std::vector<int> parent(cloud->points.size(), -1);
std::vector<float> distance(cloud->points.size(), std::numeric_limits<float>::max());
// Compute minimum spanning tree using Prim's algorithm
int current = 0;
visited[current] = true;
distance[current] = 0.0f;
while (true)
{
// Update distances to neighboring points
std::vector<int> indices;
std::vector<float> distances;
tree->nearestKSearch(cloud->points[current], 6, indices, distances);
for (int i = 1; i < indices.size(); i++)
{
int index = indices[i];
float dist = distances[i];
if (!visited[index] && dist < distance[index])
{
parent[index] = current;
distance[index] = dist;
}
}
// Find point with smallest distance to tree
float minDist = std::numeric_limits<float>::max();
int next = -1;
for (int i = 0; i < cloud->points.size(); i++)
{
if (!visited[i] && distance[i] < minDist)
{
minDist = distance[i];
next = i;
}
}
// Check if all points are visited
if (next == -1)
break;
// Add point to tree
current = next;
visited[current] = true;
}
// Create line segments from tree
pcl::PointCloud<pcl::PointXYZ>::Ptr lines(new pcl::PointCloud<pcl::PointXYZ>);
for (int i = 0; i < parent.size(); i++)
{
if (parent[i] != -1)
{
pcl::PointXYZ p1 = cloud->points[i];
pcl::PointXYZ p2 = cloud->points[parent[i]];
lines->push_back(p1);
lines->push_back(p2);
}
}
// Visualize point cloud and lines
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer('Viewer'));
viewer->addPointCloud(cloud, 'cloud');
viewer->addPointCloud(lines, 'lines');
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 1.0, 1.0, 'lines');
viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_LINE_WIDTH, 2.0, 'lines');
viewer->spin();
return 0;
}
原文地址: https://www.cveoy.top/t/topic/nRfp 著作权归作者所有。请勿转载和采集!