Excel 宏编程:Bootstrap 抽样与最小二乘法计算 Weibull 参数
由于题目中没有给出具体的数据和要求的 Weibull 参数,下面给出一个示例代码,以说明如何编写 Excel 宏来进行 Bootstrap 抽样和最小二乘法计算 Weibull 参数。
首先,我们假设我们需要计算一组数据的 Weibull 参数,并使用 Bootstrap 方法来估计参数的置信区间。我们将数据保存在 Excel 工作簿中,其中第一列为样本编号,第二列为观测值。我们可以编写以下代码来读取数据:
Sub Get_Data()
Dim dataRange As Range
Dim data() As Double
Dim n As Long
Dim i As Long
' Get data range
Set dataRange = Application.InputBox(prompt:="Select data range", Type:=8)
' Get number of data points
n = dataRange.Rows.Count - 1
' Resize data array
ReDim data(1 To n)
' Populate data array
For i = 1 To n
data(i) = dataRange.Cells(i + 1, 2).Value
Next i
' Call Weibull function to calculate parameters
Call Weibull(data)
End Sub
接下来,我们可以编写一个 Weibull 函数来计算参数。我们可以使用最小二乘法来拟合 Weibull 分布,即找到最小化残差平方和的参数。在这个函数中,我们将使用 Excel 内置的 LSQNONLIN 函数来求解最小二乘问题。代码如下:
Function Weibull(data() As Double) As Double()
Dim alpha As Double
Dim beta As Double
Dim rss As Double
Dim params(1 To 2) As Double
Dim xdata() As Double
Dim ydata() As Double
Dim i As Long
' Resize xdata and ydata arrays
ReDim xdata(1 To UBound(data))
ReDim ydata(1 To UBound(data))
' Sort data in ascending order
Call QuickSort(data, 1, UBound(data))
' Populate xdata and ydata arrays
For i = 1 To UBound(data)
xdata(i) = Log(data(i))
ydata(i) = Log(-Log(1 - i / (UBound(data) + 1)))
Next i
' Use LSQNONLIN to minimize residual sum of squares
params(1) = 1
params(2) = 1
Call Application.Run("LSQNONLIN", params, xdata, ydata)
alpha = Exp(params(1))
beta = Exp(-params(2) / params(1))
' Output results
Debug.Print "Alpha: " & alpha
Debug.Print "Beta: " & beta
' Return parameters
ReDim Weibull(1 To 2)
Weibull(1) = alpha
Weibull(2) = beta
End Function
在计算 Weibull 参数之后,我们可以使用 Bootstrap 方法来估计参数的置信区间。我们可以编写以下代码来执行 Bootstrap 抽样并计算参数的置信区间:
Sub Bootstrap(data() As Double, nBoot As Long)
Dim alpha() As Double
Dim beta() As Double
Dim n As Long
Dim i As Long
Dim j As Long
Dim k As Long
Dim sample() As Double
Dim params() As Double
Dim meanAlpha As Double
Dim meanBeta As Double
Dim stdAlpha As Double
Dim stdBeta As Double
' Get number of data points
n = UBound(data)
' Resize alpha and beta arrays
ReDim alpha(1 To nBoot)
ReDim beta(1 To nBoot)
' Perform bootstrap sampling
For i = 1 To nBoot
' Resize sample array
ReDim sample(1 To n)
' Generate random sample
For j = 1 To n
k = Int(Rnd() * n) + 1
sample(j) = data(k)
Next j
' Calculate Weibull parameters for sample
params = Weibull(sample)
' Store parameters
alpha(i) = params(1)
beta(i) = params(2)
Next i
' Calculate mean and standard deviation of parameters
meanAlpha = Application.WorksheetFunction.Average(alpha)
meanBeta = Application.WorksheetFunction.Average(beta)
stdAlpha = Application.WorksheetFunction.StDev(alpha)
stdBeta = Application.WorksheetFunction.StDev(beta)
' Output results
Debug.Print "Alpha Mean: " & meanAlpha
Debug.Print "Alpha Std: " & stdAlpha
Debug.Print "Beta Mean: " & meanBeta
Debug.Print "Beta Std: " & stdBeta
End Sub
最后,我们可以调用 Bootstrap 函数来执行 Bootstrap 抽样并输出结果。例如,我们可以使用以下代码来执行 1000 次 Bootstrap 抽样:
Sub Run_Bootstrap()
Dim dataRange As Range
Dim data() As Double
Dim nBoot As Long
' Get data range
Set dataRange = Application.InputBox(prompt:="Select data range", Type:=8)
' Get number of bootstrap samples
nBoot = 1000
' Get data
data = dataRange.Columns(2).Value
' Call Bootstrap function
Call Bootstrap(data, nBoot)
End Sub
注意,这只是一个示例代码,具体实现可能需要根据具体情况进行调整。
原文地址: https://www.cveoy.top/t/topic/nOol 著作权归作者所有。请勿转载和采集!