import os
import random
import numpy as np
import pandas as pd

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as Data

from sklearn.model_selection import train_test_split
from tqdm import tqdm

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load dataset from a CSV file
df = pd.read_csv('Electric_Power_Consumption.csv', delimiter=';',
                 parse_dates={'dt' : ['Date', 'Time']}, infer_datetime_format=True,
                 na_values=['nan','?'], index_col='dt')

# Fill missing values with the last known value
df.fillna(method='ffill', inplace=True)

# Resample to hourly data
df = df.resample('H').mean()

# Normalize the data
df = (df - df.mean()) / df.std()

# Split into training and testing datasets
train_df, test_df = train_test_split(df, test_size=0.2, shuffle=False)

# Convert data into sequences of length seq_len+timestep_pred
seq_len = 24*7 # one week
timestep_pred = 24 # predict the next 24 hours
train_data = []
for i in range(seq_len, len(train_df) - timestep_pred):
    train_data.append(train_df.iloc[i-seq_len:i].values.tolist())

train_data = np.array(train_data)
train_labels = train_df.iloc[seq_len+timestep_pred:].values

test_data = []
for i in range(seq_len, len(test_df) - timestep_pred):
    test_data.append(test_df.iloc[i-seq_len:i].values.tolist())

test_data = np.array(test_data)
test_labels = test_df.iloc[seq_len+timestep_pred:].values

print("training dataset shapes: train_data: %s and train_labels: %s" % (train_data.shape, train_labels.shape))
print("testing dataset shapes: test_data: %s and test_labels: %s" % (test_data.shape, test_labels.shape))

train_y_ts = torch.from_numpy(train_labels).float().to(device)
train_X_ts = torch.from_numpy(train_data).float().to(device)

test_y_ts = torch.from_numpy(test_labels).float().to(device)
test_X_ts = torch.from_numpy(test_data).float().to(device)

train_set = Data.TensorDataset(train_X_ts, train_y_ts)
test_set = Data.TensorDataset(test_X_ts, test_y_ts)

num_clients = 10
num_selected = 10
num_rounds = 29
epochs = 1
batch_size = 64

traindata_split = torch.utils.data.random_split(train_set, [int(train_labels.shape[0] / num_clients)] * (num_clients - 1) + [train_labels.shape[0] - int(train_labels.shape[0] / num_clients) * (num_clients - 1)])

train_loader = [torch.utils.data.DataLoader(x, batch_size=batch_size, shuffle=True) for x in traindata_split]
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=True)


# Define the LSTM model
class LSTM(nn.Module):
    def __init__(self, input_dim, hidden_dim, seq_len, num_layers=2):
        super(LSTM, self).__init__()
        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.seq_len = seq_len
        self.num_layers = num_layers

        self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True)
        self.fc = nn.Linear(hidden_dim*seq_len, 1)

    def forward(self, x):
        h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(device)
        c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_dim).to(device)

        out, (hn, cn) = self.lstm(x, (h0,c0))
        out = out.reshape(out.size(0), -1)
        out = self.fc(out)

        return out

# define particle
class Particle:
    def __init__(self, model):
        # self.position = model.get_params().detach().clone()
        self.position = model.parameters().__next__().data.detach().clone()
        self.velocity = torch.zeros_like(self.position)
        self.best_position = self.position.detach().clone()
        self.best_loss = float('inf')

# define PSO algorithm
class PSO:
    def __init__(self, model, criterion, lr=0.01, momentum=0.8, weight_decay=0.1):
        self.model = model
        self.criterion = criterion
        self.lr = lr
        self.momentum = momentum
        self.weight_decay = weight_decay
        self.particles = [Particle(model) for _ in range(num_selected)]

    def step(self):
        for i in range(num_selected):
            # Update velocity
            self.particles[i].velocity = self.momentum * self.particles[i].velocity \
                                         + 2 * torch.rand_like(self.particles[i].position) * (
                                                     self.particles[i].best_position - self.particles[i].position) \
                                         + 2 * torch.rand_like(self.particles[i].position) * (
                                                     global_best_position - self.particles[i].position)

            # Clamp velocity
            self.particles[i].velocity.clamp_(-1, 1)

            # Update position
            self.particles[i].position += self.lr * self.particles[i].velocity

            # Clamp position
            self.particles[i].position.clamp_(-1, 1)

            # Evaluate fitness of new position
            self.model.set_params(self.particles[i].position)
            # loss = self.evaluate_fitness()
            # model_param = iter(self.model.parameters())
            # for param in model_param:
            #     param.data.copy_(selected_particles[i].position)
            loss = self.evaluate_fitness()

            # Update personal best
            if loss < self.particles[i].best_loss:
                self.particles[i].best_position = self.particles[i].position.detach().clone()
                self.particles[i].best_loss = loss

    def evaluate_fitness(self):
        total_loss = 0.0
        with torch.no_grad():
            for data, target in test_loader:
                output = self.model(data)
                loss = self.criterion(output, target)
                total_loss += loss.item() * len(data)

        return total_loss / len(test_set)

    def get_best(self):
        best_particle = min(self.particles, key=lambda x: x.best_loss)
        return best_particle.best_position, best_particle.best_loss

# Train the model using PSO
input_dim = train_data.shape[2]
hidden_dim = 128
model = LSTM(input_dim, hidden_dim, seq_len).to(device)
criterion = nn.MSELoss()
optimizer_pso = PSO(model=model, criterion=criterion)

global_best_loss = float('inf')
global_best_position = None

for r in range(num_rounds):
    selected_particles = random.sample(optimizer_pso.particles, num_selected)

    for i in range(num_selected):
        # optimizer = optim.Adam(selected_particles[i].position, lr=0.01, weight_decay=0.1)
        optimizer = optim.Adam(model.parameters(), lr=0.01, weight_decay=0.1)
        # model.set_params(selected_particles[i].position)
        model_param = iter(model.parameters())
        for param in model_param:
            with torch.no_grad():
                for param, particle_param in zip(model.parameters(), selected_particles[i].position):
                    param.copy_(particle_param)
            # param.data.copy_(selected_particles[i].position)

        for epoch in range(epochs):
            for data, target in tqdm(train_loader[i],desc="Training round %d/%d client %d/%d" % (r + 1, num_rounds, i + 1, num_clients)):
                optimizer.zero_grad()
                output = model(data)
                loss = criterion(output, target)
                loss.backward()
                # Update personal best
                selected_particles[i].best_position = selected_particles[i].position.detach().clone()
                selected_particles[i].best_loss = optimizer_pso.evaluate_fitness()

                # Update global best
                if selected_particles[i].best_loss < global_best_loss:
                    global_best_loss = selected_particles[i].best_loss
                    global_best_position = selected_particles[i].best_position.detach().clone()

                optimizer.step()
                # Update personal best
                selected_particles[i].best_position = selected_particles[i].position.detach().clone()
                selected_particles[i].best_loss = optimizer_pso.evaluate_fitness()

                # Update global best
                if selected_particles[i].best_loss < global_best_loss:
                    global_best_loss = selected_particles[i].best_loss
                    global_best_position = selected_particles[i].best_position.detach().clone()

            # Update particle swarm
            optimizer_pso.step()

            # Print progress
            print("Round %d/%d, Global best loss: %.4f" % (r + 1, num_rounds, global_best_loss))
Federated Learning with Particle Swarm Optimization for Electric Power Consumption Forecasting

原文地址: https://www.cveoy.top/t/topic/nFNS 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录