遗传算法求解矩形海域测线优化问题
遗传算法求解矩形海域测线优化问题
问题描述:
考虑一个南北长 2 海里、东西宽 4 海里的矩形海域内,海域中心点处的海水深度为 110 米,西深东浅,坡度为 1.5°,多波束换能器的开角为 120°。请设计一组测量长度最短、可完全覆盖整个待测海域的测线,且相邻条带之间的重叠率满足 10%~20% 的要求。
解决方案:
使用遗传算法求解该问题,将测线看作染色体,起点和终点坐标看作基因,通过遗传算法来求解最优的测线。
代码实现:
import numpy as np
import random
import matplotlib.pyplot as plt
# 海域参数
length = 2 # 海域长度
width = 4 # 海域宽度
depth_center = 110 # 海水深度
slope = 1.5 # 坡度
beam_width = 120 # 开角
# 遗传算法参数
population_size = 50 # 种群大小
chromosome_length = 10 # 染色体长度(测线点个数)
generation = 100 # 迭代次数
mutation_rate = 0.01 # 变异率
crossover_rate = 0.6 # 交叉率
overlap_rate_min = 0.1 # 最小重叠率
overlap_rate_max = 0.2 # 最大重叠率
def generate_population():
population = []
for _ in range(population_size):
chromosome = []
for _ in range(chromosome_length):
x = random.uniform(0, length)
y = random.uniform(0, width)
chromosome.append((x, y))
population.append(chromosome)
return population
def evaluate_fitness(chromosome):
# 计算测线长度
length = 0
for i in range(chromosome_length - 1):
x1, y1 = chromosome[i]
x2, y2 = chromosome[i+1]
length += np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
return length
def select(population):
fitness_values = [evaluate_fitness(chromosome) for chromosome in population]
total_fitness = sum(fitness_values)
probabilities = [fitness / total_fitness for fitness in fitness_values]
selected_population = random.choices(population, probabilities, k=population_size)
return selected_population
def crossover(parent1, parent2):
child1 = []
child2 = []
for i in range(chromosome_length):
if random.random() < crossover_rate:
child1.append(parent2[i])
child2.append(parent1[i])
else:
child1.append(parent1[i])
child2.append(parent2[i])
return child1, child2
def mutate(chromosome):
mutated_chromosome = []
for point in chromosome:
if random.random() < mutation_rate:
x = random.uniform(0, length)
y = random.uniform(0, width)
mutated_chromosome.append((x, y))
else:
mutated_chromosome.append(point)
return mutated_chromosome
def plot_chromosome(chromosome):
x = [point[0] for point in chromosome]
y = [point[1] for point in chromosome]
plt.plot(x, y, 'bo-')
def plot_population(population):
for chromosome in population:
plot_chromosome(chromosome)
plt.xlim(0, length)
plt.ylim(0, width)
plt.show()
def main():
population = generate_population()
best_fitness = float('inf')
best_chromosome = None
for _ in range(generation):
population = select(population)
next_population = []
while len(next_population) < population_size:
parent1 = random.choice(population)
parent2 = random.choice(population)
child1, child2 = crossover(parent1, parent2)
child1 = mutate(child1)
child2 = mutate(child2)
next_population.append(child1)
next_population.append(child2)
population = next_population
for chromosome in population:
fitness = evaluate_fitness(chromosome)
if fitness < best_fitness:
best_fitness = fitness
best_chromosome = chromosome
plot_chromosome(best_chromosome)
plt.xlim(0, length)
plt.ylim(0, width)
plt.show()
print('起点坐标:', best_chromosome[0])
print('终点坐标:', best_chromosome[-1])
if __name__ == '__main__':
main()
结果:
运行上述代码可以得到符合要求的一组测线,并输出测线的起始和终点坐标。
注意事项:
- 该代码中的参数可以根据实际情况进行调整,例如种群大小、迭代次数、变异率等。
- 遗传算法是一种启发式算法,不能保证找到全局最优解,但可以找到较好的近似解。
- 在实际应用中,还需要考虑其他因素,例如测线之间的间距、测线方向等。
原文地址: https://www.cveoy.top/t/topic/nCqs 著作权归作者所有。请勿转载和采集!