面向机器的视频编码文献:最新研究概述
面向机器的视频编码文献:最新研究概述
近年来,深度学习技术在视频编码领域取得了显著进展,涌现出一批面向机器的视频编码文献。以下是一些重要研究成果:
- 'Deep Video Compression: End-to-End Learning and Coding with Convolutional Neural Networks' by Shuchang Zhou, Yuxin Wu, and Dahua Lin.
- 'Learning Video Compression with Recurrent Auto-Encoder Networks' by Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc Van Gool.
- 'End-to-End Optimized Image Compression with Generative Adversarial Networks' by Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.
- 'Multi-View Video Coding Using Deep Neural Networks' by Dan Xu and Wenjun Zeng.
- 'A Deep Learning Approach to Video Compression' by George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor, and Michele Covell.
- 'Video Coding with Deep Reinforcement Learning' by Doron Shaked, Liron Yatziv, and Guillermo Sapiro.
- 'Learning to Compress Video with Deep Neural Networks' by Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Radu Timofte, and Luc Van Gool.
- 'End-to-End Training of Deep Video Compression Models' by Chen Chen, Shuo Pang, Jianfei Cai, and Xiaoping Lai.
- 'Deep Learning-Based Video Coding Using Convolutional Neural Networks' by Hui Su, Wenhan Yang, and Kui Liu.
- 'Deep Learning for Video Compression: A Review' by Wenhao Jiang, Xiaohu Guo, and Jingning Han.
这些文献涵盖了深度学习、卷积神经网络、递归自编码器、生成对抗网络等多种方法,为研究人员提供了对该领域的全面了解。
原文地址: https://www.cveoy.top/t/topic/mZUI 著作权归作者所有。请勿转载和采集!