以下是一个简单的 ResNet-18 实现的 PyTorch 代码:

import torch
import torch.nn as nn

# ResNet basic block
class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channels, out_channels, stride=1):
        super(BasicBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_channels != self.expansion * out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion * out_channels)
            )

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out += self.shortcut(x)
        out = self.relu(out)
        return out

# ResNet
class ResNet(nn.Module):

    def __init__(self, block, layers, num_classes=10):
        super(ResNet, self).__init__()

        self.in_channels = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)

        self.layer1 = self.make_layer(block, 64, layers[0], stride=1)
        self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self.make_layer(block, 512, layers[3], stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def make_layer(self, block, out_channels, blocks, stride):
        layers = []
        layers.append(block(self.in_channels, out_channels, stride))
        self.in_channels = out_channels * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.in_channels, out_channels))
        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)

        out = self.avgpool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)

        return out

def ResNet18(num_classes=10):
    return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)

在这段代码中,'BasicBlock'定义了ResNet的基本单元,而'ResNet'则定义了整个神经网络的结构。我们使用了'make_layer'函数来生成每个ResNet层。在'ResNet'构造函数中,我们定义了一个包含四个ResNet层的网络结构。

最后,我们使用'ResNet18()'函数来创建一个ResNet-18模型。

ResNet-18 PyTorch 代码实现详解

原文地址: https://www.cveoy.top/t/topic/mZLP 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录