ResNet 人脸识别模型 - 基于MindSpore框架的训练和评估
import numpy as np
import mindspore.dataset as ds
import os
import cv2
import mindspore
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import Normal
from mindspore import context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.ops.operations import TensorAdd
from scipy.integrate._ivp.radau import P
from mindspore import Model # 承载网络结构
from mindspore.nn.metrics import Accuracy # 测试模型用
np.random.seed(58)
class BasicBlock(nn.Cell):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, pad_mode='pad',has_bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, pad_mode='pad', has_bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
self.add = TensorAdd()
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out = self.add(out, identity)
out = self.relu(out)
return out
class ResNet(nn.Cell):
def __init__(self, block, layers, num_classes):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad', has_bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
self.layer1 = self.make_layer(block, 64, layers[0])
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1)
self.flatten = nn.Flatten()
self.fc = nn.Dense(512, num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels:
downsample = nn.SequentialCell([
nn.Conv2d(self.in_channels, out_channels, kernel_size=1, stride=stride, has_bias=False),
nn.BatchNorm2d(out_channels)
])
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels
for _ in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.SequentialCell(layers)
def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = self.flatten(x)
x = self.fc(x)
return x
class TrainDatasetGenerator:
def __init__(self, file_path):
self.file_path = file_path
self.img_names = os.listdir(file_path)
def __getitem__(self, index):
data = cv2.imread(os.path.join(self.file_path, self.img_names[index]))
label = self.img_names[index].split('_')[0]
label = int(label)
data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
data = cv2.resize(data, (224, 224))
data = data.transpose().astype(np.float32) / 255.
return data, label
def __len__(self):
return len(self.img_names)
def train_resnet():
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
train_dataset_generator = TrainDatasetGenerator('D:/pythonProject7/train1')
ds_train = ds.GeneratorDataset(train_dataset_generator, ['data', 'label'], shuffle=True)
ds_train = ds_train.shuffle(buffer_size=10)
ds_train = ds_train.batch(batch_size=4, drop_remainder=True)
valid_dataset_generator = TrainDatasetGenerator('D:/pythonProject7/test1')
ds_valid = ds.GeneratorDataset(valid_dataset_generator, ['data', 'label'], shuffle=True)
ds_valid = ds_valid.batch(batch_size=4, drop_remainder=True)
num_classes = len(set(valid_dataset_generator.img_names)) # 获取测试集中的类别数
network = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.01, momentum=0.9)
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
config_ck = CheckpointConfig(save_checkpoint_steps=10, keep_checkpoint_max=10)
config_ckpt_path = 'D:/pythonProject7/ckpt/'
ckpoint_cb = ModelCheckpoint(prefix='checkpoint_resnet', directory=config_ckpt_path, config=config_ck)
model = Model(network, net_loss, net_opt, metrics={'Accuracy': Accuracy()})
epoch_size = 10
print('============== Starting Training =============')
model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
acc = model.eval(ds_valid)
print('============== {} =============='.format(acc))
epoch_size = 10
print('============== Starting Training =============')
model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
acc = model.eval(ds_valid)
print('============== {} =============='.format(acc))
epoch_size = 10
print('============== Starting Training =============')
model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
acc = model.eval(ds_valid)
print('============== {} =============='.format(acc))
if __name__ == '__main__':
train_resnet()
# 要实现人脸实时检测,可以使用OpenCV中的人脸检测器和摄像头模块。以下是示例代码:
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
# 在代码中,首先加载了OpenCV中的人脸检测器,然后通过调用摄像头模块获取每一帧图像。对于每一帧图像,我们将其转换为灰度图像,并使用人脸检测器检测其中的人脸。如果检测到人脸,则在图像中绘制一个矩形框。最后,我们将处理后的图像显示出来,并等待用户按下“q”键退出程序。
# 如果要将人脸检测集成到ResNet模型中,可以将每个人脸图像传递给模型并获取其预测结果。如果预测结果为人脸,则可以绘制一个矩形框来标记人脸。
原文地址: https://www.cveoy.top/t/topic/mTsz 著作权归作者所有。请勿转载和采集!