ResNet-18 模型训练代码:基于 MindSpore 实现图像分类
import numpy as np import mindspore.dataset as ds import os import cv2 import mindspore import mindspore.nn as nn from mindspore import Tensor from mindspore.common.initializer import Normal from mindspore import context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor from mindspore.train import Model from mindspore.nn.metrics import Accuracy from mindspore.ops.operations import TensorAdd from scipy.integrate._ivp.radau import P from mindspore import Model # 承载网络结构 from mindspore.nn.metrics import Accuracy # 测试模型用
np.random.seed(58)
class BasicBlock(nn.Cell): def init(self, in_channels, out_channels, stride=1, downsample=None): super(BasicBlock, self).init() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, pad_mode='pad',has_bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU() self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, pad_mode='pad', has_bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.downsample = downsample self.add = TensorAdd()
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out = self.add(out, identity)
out = self.relu(out)
return out
class ResNet(nn.Cell): def init(self, block, layers, num_classes): super(ResNet, self).init() self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad', has_bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
self.layer1 = self.make_layer(block, 64, layers[0])
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1)
self.flatten = nn.Flatten()
self.fc = nn.Dense(512, num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels:
downsample = nn.SequentialCell([
nn.Conv2d(self.in_channels, out_channels, kernel_size=1, stride=stride, has_bias=False),
nn.BatchNorm2d(out_channels)
])
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels
for _ in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.SequentialCell(layers)
def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = self.flatten(x)
x = self.fc(x)
return x
class TrainDatasetGenerator: def init(self, file_path): self.file_path = file_path self.img_names = os.listdir(file_path)
def __getitem__(self, index):
data = cv2.imread(os.path.join(self.file_path, self.img_names[index]))
label = self.img_names[index].split('_')[0]
label = int(label)
data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
data = cv2.resize(data, (224, 224))
data = data.transpose().astype(np.float32) / 255.
return data, label
def __len__(self):
return len(self.img_names)
def train_resnet(): context.set_context(mode=context.GRAPH_MODE, device_target='CPU') train_dataset_generator = TrainDatasetGenerator('D:/pythonProject7/train1') ds_train = ds.GeneratorDataset(train_dataset_generator, ['data', 'label'], shuffle=True) ds_train = ds_train.shuffle(buffer_size=10) ds_train = ds_train.batch(batch_size=4, drop_remainder=True) valid_dataset_generator = TrainDatasetGenerator('D:/pythonProject7/test1') ds_valid = ds.GeneratorDataset(valid_dataset_generator, ['data', 'label'], shuffle=True) ds_valid = ds_valid.batch(batch_size=4, drop_remainder=True) num_classes = len(set(valid_dataset_generator.img_names)) # 获取测试集中的类别数 network = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.01, momentum=0.9) time_cb = TimeMonitor(data_size=ds_train.get_dataset_size()) config_ck = CheckpointConfig(save_checkpoint_steps=10, keep_checkpoint_max=10) config_ckpt_path = 'D:/pythonProject7/ckpt/' ckpoint_cb = ModelCheckpoint(prefix='checkpoint_resnet', directory=config_ckpt_path, config=config_ck)
model = Model(network, net_loss, net_opt, metrics={'Accuracy': Accuracy()})
epoch_size = 10
print('============== Starting Training =============')
model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
acc = model.eval(ds_valid)
print('============== {} ============='.format(acc))
epoch_size = 10
print('============== Starting Training =============')
model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
acc = model.eval(ds_valid)
print('============== {} ============='.format(acc))
epoch_size = 10
print('============== Starting Training =============')
model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
acc = model.eval(ds_valid)
print('============== {} ============='.format(acc))
if name == 'main': train_resnet()
原文地址: https://www.cveoy.top/t/topic/mTlj 著作权归作者所有。请勿转载和采集!