ResNet-34: 基于MindSpore的图像分类模型训练
import numpy as np
import mindspore.dataset as ds
import cv2
import mindspore.nn as nn
import os
from mindspore import context, ops
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
np.random.seed(58)
class ResidualBlock(nn.Cell):
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, pad_mode='same')
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, pad_mode='same')
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
self.stride = stride
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Cell):
def __init__(self, block, layers, num_classes=34):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, pad_mode='valid',group=1)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='valid')
self.layer1 = self.make_layer(block, 64, layers[0], stride=1)
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(kernel_size=3, stride=1, pad_mode='valid')
self.fc = nn.Dense(num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if (stride != 1) or (self.in_channels != out_channels * block.expansion):
downsample = nn.SequentialCell([
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride),
nn.BatchNorm2d(out_channels * block.expansion)
])
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.SequentialCell(layers)
def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = ops.Reshape()(x, (ops.Shape()(x)[0], -1))
x = self.fc(x)
return x
class TrainDatasetGenerator:
def __init__(self, file_path):
self.file_path = file_path
self.img_names = os.listdir(file_path)
def __getitem__(self, index=0):
data = cv2.imread(os.path.join(self.file_path, self.img_names[index]))
label = int(self.img_names[index].split('-')[0])
#data = cv2.cvtColor(data,cv2.COLOR_BGR2RGB)
data = cv2.resize(data,(224,224))
# label = np.array([label])
data = data.transpose().astype(np.float32) / 255.
# data = np.expand_dims(data, axis=0)
# data = Tensor(data)
# label = Tensor(label)
return data, label
def __len__(self):
return len(self.img_names)
def train_resnet():
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
train_dataset_generator = TrainDatasetGenerator('D:/pythonproject2/digital_mindspore/dataset')
ds_train = ds.GeneratorDataset(train_dataset_generator, ['data', 'label'], shuffle=True)
ds_train = ds_train.shuffle(buffer_size=10)
ds_train = ds_train.batch(batch_size=4, drop_remainder=True)
valid_dataset_generator = TrainDatasetGenerator('D:/pythonproject2/test1')
ds_valid = ds.GeneratorDataset(valid_dataset_generator, ['data', 'label'], shuffle=True)
ds_valid = ds_valid.batch(batch_size=4, drop_remainder=True)
network = ResNet(ResidualBlock,[2,2,2,2])
net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.01, momentum=0.9)
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
config_ck = CheckpointConfig(save_checkpoint_steps=10,
keep_checkpoint_max=10)
config_ckpt_path = 'D:/pythonproject2/ckpt/'
ckpoint_cb = ModelCheckpoint(prefix='checkpoint_resnet', directory=config_ckpt_path, config=config_ck)
model = Model(network, net_loss, net_opt, metrics={'Accuracy': Accuracy()})
epoch_size = 10
print('============== Starting Training =============')
model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
acc = model.eval(ds_valid)
print('============== {} ============='.format(acc))
epoch_size = 10
print('============== Starting Training =============')
model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
acc = model.eval(ds_valid)
print('============== {} ============='.format(acc))
epoch_size = 10
print('============== Starting Training =============')
model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])
acc = model.eval(ds_valid)
print('============== {} ============='.format(acc))
if __name__ == '__main__':
train_resnet()
TypeError: __init__() takes from 3 to 5 positional arguments but 6 were given
解决错误代码示例
内容:在ResidualBlock类中,第四个参数应该是downsample而不是out_channels,修改为:
self.layer1 = self.make_layer(block, 64, layers[0], stride=1)
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if (stride != 1) or (self.in_channels != out_channels * block.expansion):
downsample = nn.SequentialCell([
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride),
nn.BatchNorm2d(out_channels * block.expansion)
])
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.SequentialCell(layers)
原文地址: https://www.cveoy.top/t/topic/mSOA 著作权归作者所有。请勿转载和采集!