使用贝叶斯优化优化神经网络模型
导入必要的库
import torch
import torch.nn as nn
import torch.optim as optim
import pandas as pd
!pip install bayesian-optimization
from bayes_opt import BayesianOptimization
# 读取Excel表格
data = pd.read_excel('C:\Users\lenovo\Desktop\HIV\GSE6740GSE50011基因降低\output_data.xlsx')
# 数据标准化
data.iloc[:, 1:] = (data.iloc[:, 1:] - data.iloc[:, 1:].mean()) / data.iloc[:, 1:].std()
# 划分数据集
x_train = torch.tensor(data.iloc[:, 1:].values, dtype=torch.float32)
y_train = torch.tensor(data.iloc[:, 0].values, dtype=torch.long)
num_features = x_train.shape[1]
# 定义第一个模型
class Model1(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(Model1, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, output_dim)
self.dropout = nn.Dropout(p=0.5)
def forward(self, x):
out = nn.functional.relu(self.fc1(x))
out = self.dropout(out)
out = nn.functional.relu(self.fc2(out))
out = self.dropout(out)
out = self.fc3(out)
return out
# 初始化第一个模型
input_dim = num_features
hidden_dim = 128
output_dim = 4
model1 = Model1(input_dim, hidden_dim, output_dim)
# 定义第二个模型
class Model2(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(Model2, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.dropout = nn.Dropout(p=0.5)
def forward(self, x):
out = nn.functional.relu(self.fc1(x))
out = self.dropout(out)
out = self.fc2(out)
return out
# 初始化第二个模型
input_dim = output_dim
hidden_dim = 64
output_dim = 1
model2 = Model2(input_dim, hidden_dim, output_dim)
# 定义损失函数和优化器
criterion1 = nn.CrossEntropyLoss()
criterion2 = nn.BCEWithLogitsLoss()
optimizer1 = optim.Adam(model1.parameters(), lr=0.001)
optimizer2 = optim.Adam(model2.parameters(), lr=0.001)
# 训练第一个模型
num_epochs1 = 2000
for epoch in range(num_epochs1):
model1.train()
optimizer1.zero_grad()
outputs = model1(x_train)
loss = criterion1(outputs, y_train)
loss.backward()
optimizer1.step()
_, predicted = torch.max(outputs.data, 1)
accuracy = (predicted == y_train).sum().item() / y_train.size(0)
if (epoch + 1) % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}, Accuracy: {:.2f}%'.format(epoch + 1, num_epochs1, loss.item(),
accuracy * 100))
# 训练第二个模型
num_epochs2 = 1000
for epoch in range(num_epochs2):
model2.train()
optimizer2.zero_grad()
inputs = model1(x_train)
outputs = model2(inputs)
loss = criterion2(outputs, y_train.float().unsqueeze(1))
loss.backward()
optimizer2.step()
predicted = outputs.ge(0.5).view(-1).long()
accuracy = (predicted == y_train).sum().item() / y_train.size(0)
if (epoch + 1) % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}, Accuracy: {:.2f}%'.format(epoch + 1, num_epochs2, loss.item(),
accuracy * 100))
## 在上述代码的基础上对神经网络模型进行贝叶斯优化
# 定义贝叶斯优化函数
def train_evaluate(hidden_dim1, hidden_dim2, dropout_rate1, dropout_rate2, learning_rate1, learning_rate2):
# 初始化第一个模型
input_dim = num_features
output_dim1 = 4
model1 = Model1(input_dim, int(hidden_dim1), output_dim1)
model1.dropout.p = dropout_rate1
# 初始化第二个模型
input_dim = output_dim1
output_dim2 = 1
model2 = Model2(input_dim, int(hidden_dim2), output_dim2)
model2.dropout.p = dropout_rate2
# 定义损失函数和优化器
criterion1 = nn.CrossEntropyLoss()
criterion2 = nn.BCEWithLogitsLoss()
optimizer1 = optim.Adam(model1.parameters(), lr=learning_rate1)
optimizer2 = optim.Adam(model2.parameters(), lr=learning_rate2)
# 训练第一个模型
num_epochs1 = 2000
for epoch in range(num_epochs1):
model1.train()
optimizer1.zero_grad()
outputs = model1(x_train)
loss = criterion1(outputs, y_train)
loss.backward()
optimizer1.step()
# 训练第二个模型
num_epochs2 = 1000
for epoch in range(num_epochs2):
model2.train()
optimizer2.zero_grad()
inputs = model1(x_train)
outputs = model2(inputs)
loss = criterion2(outputs, y_train.float().unsqueeze(1))
loss.backward()
optimizer2.step()
# 计算准确率
model1.eval()
model2.eval()
inputs = model1(x_train)
outputs = model2(inputs)
predicted = outputs.ge(0.5).view(-1).long()
accuracy = (predicted == y_train).sum().item() / y_train.size(0)
return accuracy
# 定义优化参数范围
bounds = {'hidden_dim1': (32, 256),
'hidden_dim2': (16, 128),
'dropout_rate1': (0, 0.5),
'dropout_rate2': (0, 0.5),
'learning_rate1': (0.0001, 0.01),
'learning_rate2': (0.0001, 0.01)}
# 初始化贝叶斯优化器并运行优化
optimizer = BayesianOptimization(f=train_evaluate, pbounds=bounds, random_state=42)
optimizer.maximize(init_points=10, n_iter=50)
# 输出最优参数和准确率
print(optimizer.max)
代码解释:
- 导入必要的库: 导入
torch,torch.nn,torch.optim,pandas和bayesian-optimization库。 - 读取和预处理数据: 读取 Excel 表格数据,并对数据进行标准化。
- 定义模型: 定义两个神经网络模型
Model1和Model2,分别用于分类和回归任务。 - 定义贝叶斯优化函数: 定义
train_evaluate函数,用于训练模型并返回模型的准确率。 - 定义优化参数范围: 定义一个字典
bounds,指定要优化的参数及其范围。 - 初始化贝叶斯优化器并运行优化: 初始化
BayesianOptimization对象,并使用maximize方法运行优化过程。 - 输出最优参数和准确率: 打印优化器找到的最优参数和相应的准确率。
贝叶斯优化原理:
贝叶斯优化是一种基于模型的优化方法,它利用历史数据来构建一个关于目标函数的概率模型。在每次迭代中,贝叶斯优化算法会根据这个概率模型选择一个最有希望的点进行评估。通过不断迭代,贝叶斯优化算法最终能够找到目标函数的全局最优解。
代码示例中:
train_evaluate函数是贝叶斯优化算法需要优化的目标函数,它根据传入的参数训练模型并返回模型的准确率。BayesianOptimization对象利用train_evaluate函数和参数范围bounds,构建一个概率模型,并通过不断迭代找到最优参数组合。maximize方法的init_points参数指定初始采样点的数量,n_iter参数指定迭代次数。
代码运行后:
代码会输出一个字典,包含找到的最优参数和相应的准确率。你可以根据这些信息调整模型参数,进一步提升模型的性能。
总结:
贝叶斯优化是一种强大的技术,可以帮助你找到神经网络模型的最优参数组合,提升模型的准确率。通过使用 bayesian-optimization 库,你可以轻松地将贝叶斯优化应用到你的神经网络模型中。
原文地址: https://www.cveoy.top/t/topic/mOe1 著作权归作者所有。请勿转载和采集!