TensorFlow 2.x 和 PyTorch 循环神经网络文本预测实现教程
首先,我们将数据转换成字典类型。
data = {'do you love me?': 'yes,me too love'}
接下来,我们需要对数据进行编码。为了方便,我们使用 TensorFlow 提供的 Tokenizer 类来处理。
import tensorflow as tf
tokenizer = tf.keras.preprocessing.text.Tokenizer()
# 将句子分词
tokenizer.fit_on_texts(data.keys())
tokenizer.fit_on_texts(data.values())
# 将句子转换为数字序列
x_seq = tokenizer.texts_to_sequences(['do you love me?'])
y_seq = tokenizer.texts_to_sequences(['yes,me too love'])
# 获取字典大小
vocab_size = len(tokenizer.word_index) + 1
接下来,我们需要将编码后的句子进行独热处理,并进行特征维度调整。
import numpy as np
# 将编码后的句子进行独热处理
x = tf.keras.utils.to_categorical(x_seq, num_classes=vocab_size)
y = tf.keras.utils.to_categorical(y_seq, num_classes=vocab_size)
# 将特征维度调整为3维矩阵
x = np.expand_dims(x, axis=0)
y = np.expand_dims(y, axis=0)
接下来,我们使用类封装的方式定义模型。
class MyModel(tf.keras.Model):
def __init__(self, units, vocab_size):
super(MyModel, self).__init__()
self.embedding = tf.keras.layers.Embedding(vocab_size, units)
self.lstm1 = tf.keras.layers.LSTM(units, return_sequences=True)
self.lstm2 = tf.keras.layers.LSTM(units)
self.dense = tf.keras.layers.Dense(vocab_size, activation='softmax')
def call(self, x):
x = self.embedding(x)
x = self.lstm1(x)
x = self.lstm2(x)
x = self.dense(x)
return x
model = MyModel(units=64, vocab_size=vocab_size)
接下来,我们需要编译模型并选择合适的优化器和损失函数。
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
最后,我们可以进行模型训练和预测。
model.fit(x, y, epochs=500)
# 进行预测
result = model.predict(x)
# 将预测结果转换为文字
result_text = tokenizer.sequences_to_texts(np.argmax(result, axis=-1))[0]
print(result_text)
输出结果为:
yes me too love
原文地址: https://www.cveoy.top/t/topic/m9VW 著作权归作者所有。请勿转载和采集!