以下是一段 Transformer 代码示例:

import torch
import torch.nn as nn
import torch.optim as optim

class Transformer(nn.Module):
    def __init__(self, input_dim, output_dim, n_layers, n_heads, hidden_dim, dropout):
        super(Transformer, self).__init__()

        self.input_dim = input_dim
        self.output_dim = output_dim
        self.n_layers = n_layers
        self.n_heads = n_heads
        self.hidden_dim = hidden_dim
        self.dropout = nn.Dropout(dropout)

        self.encoder = nn.ModuleList([
            nn.MultiheadAttention(hidden_dim, n_heads, dropout=dropout),
            nn.LayerNorm(hidden_dim),
            nn.Linear(hidden_dim, hidden_dim * 4),
            nn.ReLU(),
            nn.Linear(hidden_dim * 4, hidden_dim),
            nn.Dropout(dropout)
        ])

        self.decoder = nn.ModuleList([
            nn.MultiheadAttention(hidden_dim, n_heads, dropout=dropout),
            nn.LayerNorm(hidden_dim),
            nn.Linear(hidden_dim, hidden_dim * 4),
            nn.ReLU(),
            nn.Linear(hidden_dim * 4, hidden_dim),
            nn.Dropout(dropout)
        ])

        self.output = nn.Linear(hidden_dim, output_dim)

    def forward(self, src, trg):
        # Encoder
        for i in range(self.n_layers):
            attn_output, _ = self.encoder[0](src, src, src)
            src = src + self.dropout(self.encoder[1](attn_output))

            ffn_output = self.encoder[5](self.encoder[4](self.encoder[3](self.encoder[2](src))))
            src = src + self.dropout(self.encoder[1](ffn_output))

        # Decoder
        for i in range(self.n_layers):
            attn_output, _ = self.decoder[0](trg, trg, trg)
            trg = trg + self.dropout(self.decoder[1](attn_output))

            attn_output, _ = self.decoder[0](trg, src, src)
            trg = trg + self.dropout(self.decoder[1](attn_output))

            ffn_output = self.decoder[5](self.decoder[4](self.decoder[3](self.decoder[2](trg))))
            trg = trg + self.dropout(self.decoder[1](ffn_output))

        # Output
        output = self.output(trg)

        return output

# Example usage
model = Transformer(input_dim=100, output_dim=10, n_layers=6, n_heads=8, hidden_dim=512, dropout=0.1)
optimizer = optim.Adam(model.parameters(), lr=0.001)
loss_fn = nn.MSELoss()

src = torch.randn(10, 100)
trg = torch.randn(10, 100)

output = model(src, trg)
loss = loss_fn(output, torch.randn(10, 10))
loss.backward()
optimizer.step()

创新创业的想法:

  1. 一款基于人工智能的语音助手,可以通过语音控制家居设备、查询天气、播放音乐等等。
  2. 开发一种绿色环保的新型电池,能够有效减少电池废弃物对环境的污染,并提高电池的使用寿命和储存能量。
  3. 基于区块链技术开发一款安全、去中心化的电子投票系统,可以应用于政治选举、企业决策等各种场景。
  4. 利用虚拟现实技术开发一款全新的电子游戏,让玩家可以在虚拟世界中体验无限可能的冒险和探索,与其他玩家互动。
  5. 一款智能健康监测手环,可以通过传感器实时监测人体生理指标,包括心率、血氧、血压等,并提供智能分析和健康建议。

原文地址: https://www.cveoy.top/t/topic/lPyG 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录