Python 粒子滤波算法异常点检测与剔除
以下是使用粒子滤波算法找出并剔除异常点的 Python 代码:
import numpy as np
def particle_filter(x, y, t, num_particles=100, threshold=2):
' 初始化粒子 '
particles = np.random.rand(num_particles, 3)
particles[:, 0] *= np.max(x)
particles[:, 1] *= np.max(y)
particles[:, 2] *= np.max(t)
' 计算每个粒子的权重 '
weights = np.zeros(num_particles)
for i in range(num_particles):
weights[i] = np.sqrt((particles[i, 0] - x)**2 + (particles[i, 1] - y)**2 + (particles[i, 2] - t)**2)
' 根据权重排序粒子 '
sorted_indices = np.argsort(weights)
particles = particles[sorted_indices]
weights = weights[sorted_indices]
' 计算异常点的阈值 '
threshold = np.percentile(weights, threshold)
' 剔除异常点 '
filtered_particles = particles[weights <= threshold]
return filtered_particles[:, 0], filtered_particles[:, 1], filtered_particles[:, 2]
x = [0.0, 1.0, 3.0, 4.0, 7.0, 8.0, 13.0, 9.0, 11.0, 11.0]
y = [0.0, 2.0, 5.0, 5.0, 5.0, 4.0, 20.0, 3.0, 1.0, 0.0]
t = [0.0, 0.1, 0.3, 0.4, 0.7, 0.8, 0.9, 1.0, 1.2, 1.3]
filtered_x, filtered_y, filtered_t = particle_filter(x, y, t)
print('Filtered x:', filtered_x)
print('Filtered y:', filtered_y)
print('Filtered t:', filtered_t)
运行以上代码,将得到剔除异常点后的x坐标、y坐标和时间。
原文地址: https://www.cveoy.top/t/topic/lPuX 著作权归作者所有。请勿转载和采集!