Gene Selection with SVM-RFE: Identifying Relevant Genes for Result Variable in R
Gene Selection with SVM-RFE in R
This example demonstrates how to use Support Vector Machine Recursive Feature Elimination (SVM-RFE) in R to identify the most relevant genes influencing a result variable. We assume a dataframe named 'dataframe' containing 12 gene symbols as variables (columns 1-12) and a 'result_var' variable (column 13).
R Code
# Load required packages
library(e1071)
library(caret)
# Define the SVM model
svm_model <- svm(result_var ~ ., data = dataframe, kernel = 'linear')
# Perform SVM-RFE
svm_rfe <- rfe(dataframe[,1:12], dataframe$result_var, sizes = c(1:12), rfeControl = rfeControl(functions = svmFuncs, method = 'cv', number = 10))
# Print the ranking of genes
print(svm_rfe$optVariables)
# Plot the SVM-RFE results
plot(svm_rfe, type=c('g', 'o'))
Explanation
- Load Packages: We load the
e1071package for SVM functionality and thecaretpackage for SVM-RFE implementation. - SVM Model: We define a linear kernel SVM model using all variables except the result variable (
result_var ~ .). - SVM-RFE: The
rfefunction performs SVM-RFE. We provide the gene variables (columns 1-12), the result variable (dataframe$result_var), the range of feature sizes to consider (1 to 12), and control parameters for 10-fold cross-validation (rfeControl). - Print Gene Ranking: The
optVariablesattribute of thesvm_rfeobject holds the ranked genes based on relevance to the result variable. - Plot Results: The
plotfunction visualizes the SVM-RFE results, showing model accuracy across different feature sizes. The 'g' and 'o' arguments generate both a line and scatter plot for clarity.
This code will identify the most relevant genes impacting the result variable using the powerful SVM-RFE approach. You can adjust the sizes parameter and rfeControl parameters for more fine-grained control and optimization.
原文地址: https://www.cveoy.top/t/topic/lGc0 著作权归作者所有。请勿转载和采集!