基于LSTM模型的时间序列预测:代码详解与优化
import numpy as np
from keras.layers.core import Dense, Activation, Dropout
from keras.layers import LSTM
from keras.models import Sequential, load_model
from keras.callbacks import Callback
import keras.backend as KTF
import tensorflow as tf
import pandas as pd
import os
import keras.callbacks
import matplotlib.pyplot as plt
# 设定为自增长
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
KTF.tf.compat.v1.keras.backend.set_session(session)
def create_dataset(data, n_predictions, n_next):
'''
对数据进行处理
'''
dim = data.shape[1]
train_X, train_Y = [], []
for i in range(data.shape[0] - n_predictions - n_next - 1):
a = data[i:(i + n_predictions), :]
train_X.append(a)
tempb = data[(i + n_predictions):(i + n_predictions + n_next), :]
b = []
for j in range(len(tempb)):
for k in range(dim):
b.append(tempb[j, k])
train_Y.append(b)
train_X = np.array(train_X, dtype='float64')
train_Y = np.array(train_Y, dtype='float64')
test_X, test_Y = [], []
i = data.shape[0] - n_predictions - n_next - 1
a = data[i:(i + n_predictions), :]
test_X.append(a)
tempb = data[(i + n_predictions):(i + n_predictions + n_next), :]
b = []
for j in range(len(tempb)):
for k in range(dim):
b.append(tempb[j, k])
test_Y.append(b)
test_X = np.array(test_X, dtype='float64')
test_Y = np.array(test_Y, dtype='float64')
return train_X, train_Y, test_X, test_Y
def NormalizeMult(data, set_range):
'''
返回归一化后的数据和最大最小值
'''
normalize = np.arange(2 * data.shape[1], dtype='float64')
normalize = normalize.reshape(data.shape[1], 2)
for i in range(0, data.shape[1]):
if set_range == True:
list = data[:, i]
listlow, listhigh = np.percentile(list, [0, 100])
else:
if i == 0:
listlow = -90
listhigh = 90
else:
listlow = -180
listhigh = 180
normalize[i, 0] = listlow
normalize[i, 1] = listhigh
delta = listhigh - listlow
if delta != 0:
for j in range(0, data.shape[0]):
data[j, i] = (data[j, i] - listlow) / delta
return data, normalize
def trainModel(train_X, train_Y):
'''
trainX,trainY: 训练LSTM模型所需要的数据
'''
model = Sequential()
model.add(LSTM(
120,
input_shape=(train_X.shape[1], train_X.shape[2]),
return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(
120,
return_sequences=False))
model.add(Dropout(0.3))
model.add(Dense(
train_Y.shape[1]))
model.add(Activation('relu'))
model.compile(loss='mse', optimizer='adam', metrics=['acc'])
model.fit(train_X, train_Y, epochs=100, batch_size=64, verbose=1)
model.summary()
return model
if __name__ == '__main__':
train_num = 6
per_num = 1
# set_range = False
set_range = True
# 读入时间序列的文件数据
data = pd.read_csv('11112_testData.csv', sep=',').iloc[0:, 1:5].values
# data = pd.read_csv('11112_testData.csv', sep=',').values
print(data)
print('样本数:{0},维度:{1}'.format(data.shape[0], data.shape[1]))
print(data)
# 画样本数据库
plt.plot(data[:, 1], data[:, 0], c='r', label='result of recognition')
plt.legend(loc='upper left')
plt.grid()
plt.show()
# 归一化
data, normalize = NormalizeMult(data, set_range)
# print(normalize)
# 生成训练数据
train_X, train_Y, test_X, test_Y = create_dataset(data, train_num, per_num)
print('x\n', train_X.shape)
print('y\n', train_Y.shape)
# 训练模型
model = trainModel(train_X, train_Y)
loss, acc = model.evaluate(train_X, train_Y, verbose=2)
print('Loss : {}, Accuracy: {}'.format(loss, acc * 100))
# 保存模型
np.save('traj_model_trueNorm_LSTM.npy', normalize)
model.save('./traj_model_120_LSTM.h5')
代码详解
-
数据预处理
create_dataset(data, n_predictions, n_next)函数用于生成训练数据和测试数据。它根据提供的参数n_predictions和n_next来划分数据。n_predictions表示使用多少个时间步长的数据预测下一个时间步长的数据,n_next表示预测多少个时间步长的数据。NormalizeMult(data, set_range)函数对数据进行归一化处理,将数据映射到[0, 1]之间。
-
模型训练
trainModel(train_X, train_Y)函数构建并训练LSTM模型。该模型包含两个LSTM层,两个Dropout层,一个Dense层和一个ReLU激活层。模型使用均方误差作为损失函数,Adam优化器进行优化。
-
模型评估
- 使用
model.evaluate()函数对训练好的模型进行评估,并输出损失值和准确率。
- 使用
-
模型保存
- 使用
np.save()函数保存归一化参数,方便后续对新数据进行归一化处理。 - 使用
model.save()函数保存训练好的模型。
- 使用
代码优化
- 代码注释: 添加代码注释,方便理解代码逻辑。
- 变量命名: 使用更具描述性的变量名称,提高代码可读性。
- 格式化输出: 使用格式化字符串输出结果,提高可读性。
- 数据可视化: 使用
matplotlib库对原始数据进行可视化,方便直观地理解数据。
搜索引擎优化
- 标题: 使用更具描述性的标题,例如“基于LSTM模型的时间序列预测:代码详解与优化”,并包含关键词“时间序列预测”,'LSTM'等。
- 描述: 在代码中添加注释,解释代码的功能,并使用关键词“时间序列预测”,'LSTM','深度学习'等,方便搜索引擎理解代码内容。
- 关键词: 在json格式的输出中添加关键词,例如“时间序列预测”,'LSTM','深度学习','Python'等。
通过对代码进行优化和搜索引擎优化,可以提高代码的可读性和可理解性,并方便搜索引擎收录代码,提高代码的搜索排名。
原文地址: https://www.cveoy.top/t/topic/l494 著作权归作者所有。请勿转载和采集!