import numpy as np
import mindspore.dataset as ds
import os
import cv2
import mindspore
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.initializer import Normal
from mindspore import context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.ops.operations import TensorAdd
from scipy.integrate._ivp.radau import P
from mindspore import Model # 承载网络结构
from mindspore.nn.metrics import Accuracy # 测试模型用

np.random.seed(58)


class BasicBlock(nn.Cell):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, pad_mode='pad',has_bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, pad_mode='pad', has_bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample
        self.add = TensorAdd()

    def construct(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.add(out, identity)
        out = self.relu(out)

        return out

class ResNet(nn.Cell):
    def __init__(self, block, layers, num_classes=100): # 修改此处,将 num_classes 改为 100
        super(ResNet, self).__init__()
        self.in_channels = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad', has_bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU()
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
        self.layer1 = self.make_layer(block, 64, layers[0])
        self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1)
        self.flatten = nn.Flatten()
        self.fc = nn.Dense(512, num_classes)

    def make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if stride != 1 or self.in_channels != out_channels:
            downsample = nn.SequentialCell([
                nn.Conv2d(self.in_channels, out_channels, kernel_size=1, stride=stride, has_bias=False),
                nn.BatchNorm2d(out_channels)
            ])

        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels
        for _ in range(1, blocks):
            layers.append(block(out_channels, out_channels))

        return nn.SequentialCell(layers)

    def construct(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = self.flatten(x)
        x = self.fc(x)

        return x


class TrainDatasetGenerator:
    def __init__(self, file_path):
        self.file_path = file_path
        self.img_names = os.listdir(file_path)

    def __getitem__(self, index):
        data = cv2.imread(os.path.join(self.file_path, self.img_names[index]))
        label = self.img_names[index].split('_')[0]
        label = int(label)
        data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
        data = cv2.resize(data, (224, 224))
        data = data.transpose().astype(np.float32) / 255.
        return data, label

    def __len__(self):
        return len(self.img_names)


def train_resnet():
    context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
    train_dataset_generator = TrainDatasetGenerator('D:/pythonProject7/train1')
    ds_train = ds.GeneratorDataset(train_dataset_generator, ['data', 'label'], shuffle=True)
    ds_train = ds_train.shuffle(buffer_size=10)
    ds_train = ds_train.batch(batch_size=4, drop_remainder=True)
    valid_dataset_generator = TrainDatasetGenerator('D:/pythonProject7/test1')
    ds_valid = ds.GeneratorDataset(valid_dataset_generator, ['data', 'label'], shuffle=True)
    ds_valid = ds_valid.batch(batch_size=4, drop_remainder=True)
    network = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=100)
    net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
    net_opt = nn.Momentum(network.trainable_params(), learning_rate=0.01, momentum=0.9)
    time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
    config_ck = CheckpointConfig(save_checkpoint_steps=10, keep_checkpoint_max=10)
    config_ckpt_path = 'D:/pythonProject7/ckpt/'
    ckpoint_cb = ModelCheckpoint(prefix='checkpoint_resnet', directory=config_ckpt_path, config=config_ck)

    model = Model(network, net_loss, net_opt, metrics={'Accuracy': Accuracy()})
    epoch_size = 10
    print('============== Starting Training =============')
    model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])

    acc = model.eval(ds_valid)
    print('============== {} ============='.format(acc))
    epoch_size = 10
    print('============== Starting Training =============')
    model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])

    acc = model.eval(ds_valid)
    print('============== {} ============='.format(acc))
    epoch_size = 10
    print('============== Starting Training =============')
    model.train(epoch_size, ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()])

    acc = model.eval(ds_valid)
    print('============== {} ============='.format(acc))

if __name__ == '__main__':
    train_resnet()

代码中的num_classes=100表示人脸数据集的类别数为100,修改后代码可用于训练人脸识别模型。


原文地址: https://www.cveoy.top/t/topic/jqn6 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录