实时人脸识别系统:使用 Mindspore 和 ResNet 模型
实时人脸识别系统:使用 Mindspore 和 ResNet 模型
本代码使用 Mindspore 框架和 ResNet 模型实现了一个实时人脸识别系统。系统将加载预训练模型,检测人脸,识别类别并显示结果。
代码示例
import os
import cv2
import numpy as np
import mindspore
from mindspore import Tensor, load_checkpoint, load_param_into_net
from mindspore.dataset.vision import py_transforms
from mindspore.dataset.transforms.py_transforms import Compose
from PIL import Image
from main import ResNet, BasicBlock
# 加载标签
with open('label.txt') as f:
labels = f.readlines()
labels = [l.strip() for l in labels]
# 加载人脸检测器
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# 打开摄像头
cap = cv2.VideoCapture(0)
# 遍历ckpt文件夹中的所有ckpt文件
ckpt_dir = 'D:/pythonProject7/ckpt/'
ckpt_files = os.listdir(ckpt_dir)
ckpt_files = [f for f in ckpt_files if f.endswith('.ckpt')]
ckpt_files.sort(key=lambda x: os.path.getmtime(os.path.join(ckpt_dir, x)))
for ckpt_file in ckpt_files:
# 加载模型的函数
def load_model():
network = ResNet(BasicBlock, [2, 2, 2, 2], num_classes=100)
params = load_checkpoint(os.path.join(ckpt_dir, ckpt_file))
load_param_into_net(network, params)
return network
# 加载模型
network = load_model()
while True:
# 读取视频帧
ret, frame = cap.read()
# 转换为灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 检测人脸
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x, y, w, h) in faces:
# 提取人脸图像
face = gray[y:y + h, x:x + w]
face = cv2.resize(face, (224, 224)).astype(np.float32)
face = cv2.cvtColor(face, cv2.COLOR_GRAY2RGB)
# 转换为Tensor类型,并进行归一化
transform = Compose([
py_transforms.ToTensor(),
py_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
face = transform(face)
# 转换为Tensor类型,并增加一个维度
face = Tensor(face)
#face = mindspore.ops.ExpandDims()(face, 0)
# 预测人脸所属的类别
output = network(face)
prediction = np.argmax(output.asnumpy())
# 在图像上标注人脸和类别
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.putText(frame, labels[prediction], (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
# 显示图像
cv2.imshow('frame',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头并关闭窗口
cap.release()
cv2.destroyAllWindows()
### 可能的原因
如果ckpt文件无法正确识别人脸,可能是因为模型在训练时没有考虑到人脸识别的特征,或者模型的训练数据集与实际应用场景有较大差异。另外,也可能是模型的超参数设置不合理,导致模型无法准确识别人脸。需要对模型进行调整和优化,以提高识别准确率。
注意事项
- 本代码使用的是
haarcascade_frontalface_default.xml人脸检测器。您可以根据需要使用其他的人脸检测器。 label.txt文件包含了每个类别的标签。您需要根据自己的需求修改该文件。ckpt_dir变量指定了存储预训练模型的文件夹路径。您需要根据实际情况修改该路径。- 模型的训练数据和超参数设置对于识别准确率至关重要。需要根据实际需求进行调整和优化。
原文地址: https://www.cveoy.top/t/topic/jqmM 著作权归作者所有。请勿转载和采集!