Python 实现 ID3 决策树算法:从熵计算到鸢尾花数据集预测
Python 实现 ID3 决策树算法:从熵计算到鸢尾花数据集预测/n/n本文将使用 Python 语言实现 ID3 决策树算法,并使用鸢尾花数据集进行分类预测。/n/n### 算法实现/n/n1. 熵的计算:/n/n熵用于度量样本集合的不确定性,熵越大,样本集合的不确定性就越大。/n/n熵的计算公式为:$H=-/sum_{i=1}^{n}p_i/log_2p_i$/n/n其中,$n$为样本集合中类别的个数,$p_i$为每个类别在样本集合中出现的概率。/n/n2. 经验条件熵的计算:/n/n经验条件熵用于度量在某个特征条件下,样本集合的不确定性。/n/n经验条件熵的计算公式为:$H(D|A)=/sum_{i=1}^{n}/frac{|D_i|}{|D|}H(D_i)$/n/n其中,$n$为特征$A$的取值个数,$D_i$为在特征$A$条件下,样本集合$D$中第$i$个取值所对应的样本子集,$|D_i|$为样本子集$D_i$的样本个数,$|D|$为样本集合$D$的样本个数。/n/n3. 信息增益的计算:/n/n信息增益用于度量特征$A$对样本集合$D$的分类能力。/n/n信息增益的计算公式为:$g(D,A)=H(D)-H(D|A)$/n/n4. ID3 算法:/n/nID3 算法是一种基于信息增益的决策树算法,其基本思想是在每个节点上选择信息增益最大的特征作为划分依据,生成决策树。/n/n### 程序实现/n/npython/nimport numpy as np/n/nclass Node:/n def __init__(self, feature=None, label=None, children=None):/n self.feature = feature/n self.label = label/n self.children = children if children else {}/n/nclass ID3:/n def __init__(self, epsilon=0.1):/n self.epsilon = epsilon/n/n def entropy(self, y):/n _, counts = np.unique(y, return_counts=True)/n p = counts / len(y)/n return -np.sum(p * np.log2(p))/n/n def conditional_entropy(self, X, y, feature):/n values, counts = np.unique(X[:, feature], return_counts=True)/n p = counts / len(X)/n h = np.zeros(len(values))/n for i, value in enumerate(values):/n h[i] = self.entropy(y[X[:, feature] == value])/n return np.sum(p * h)/n/n def information_gain(self, X, y, feature):/n return self.entropy(y) - self.conditional_entropy(X, y, feature)/n/n def id3(self, X, y, features):/n if len(np.unique(y)) == 1:/n return Node(label=y[0])/n if len(features) == 0:/n return Node(label=np.bincount(y).argmax())/n gains = [self.information_gain(X, y, feature) for feature in features]/n best_feature_index = np.argmax(gains)/n if gains[best_feature_index] < self.epsilon:/n return Node(label=np.bincount(y).argmax())/n best_feature = features[best_feature_index]/n node = Node(feature=best_feature)/n values = np.unique(X[:, best_feature])/n for value in values:/n X_sub = X[X[:, best_feature] == value]/n y_sub = y[X[:, best_feature] == value]/n node.children[value] = self.id3(X_sub, y_sub, np.delete(features, best_feature_index))/n return node/n/n def fit(self, X, y):/n self.root = self.id3(X, y, np.arange(X.shape[1]))/n/n def predict(self, X):/n y_pred = np.zeros(X.shape[0])/n for i, x in enumerate(X):/n node = self.root/n while node.children:/n node = node.children[x[node.feature]]/n y_pred[i] = node.label/n return y_pred/n/n/n### 鸢尾花数据集预测分类/n/npython/nfrom sklearn.datasets import load_iris/nfrom sklearn.model_selection import train_test_split/nfrom sklearn.tree import DecisionTreeClassifier/nfrom sklearn.metrics import accuracy_score/n/n# 加载数据集/niris = load_iris()/nX = iris.data/ny = iris.target/n/n# 划分训练集和测试集/nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)/n/n# 使用 ID3 算法训练模型/nid3 = ID3()/nid3.fit(X_train, y_train)/ny_pred = id3.predict(X_test)/nprint('ID3 算法预测准确率:', accuracy_score(y_test, y_pred))/n/n# 使用 sklearn 的决策树算法训练模型/ndt = DecisionTreeClassifier()/ndt.fit(X_train, y_train)/ny_pred = dt.predict(X_test)/nprint('sklearn 决策树算法预测准确率:', accuracy_score(y_test, y_pred))/n/n/n### 程序存在的问题/n/n1. ID3 算法只能处理离散特征,无法处理连续特征。/n2. ID3 算法容易产生过拟合现象,可以使用剪枝等方法避免过拟合。/n3. ID3 算法对于噪声数据比较敏感,容易产生错误的决策。/n/n### 总结/n/n本文介绍了使用 Python 实现 ID3 决策树算法的基本步骤,并使用鸢尾花数据集进行了分类预测。ID3 算法是一种经典的决策树算法,但它也存在一些局限性。在实际应用中,需要根据具体的问题选择合适的算法。/n
原文地址: https://www.cveoy.top/t/topic/jqUQ 著作权归作者所有。请勿转载和采集!