import os import sys import codecs import numpy as np from sklearn.metrics import classification_report from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction import DictVectorizer from sklearn.tree import DecisionTreeClassifier import pickle

定义函数,读取数据文件

def read_data_file(data_file): with codecs.open(data_file, 'r', encoding='utf-8') as f: lines = f.readlines() data = [] labels = [] for line in lines: if line.strip(): parts = line.strip().split('') if len(parts) < 2: continue data.append(parts[1]) labels.append(parts[0]) return data, labels

定义函数,读取训练数据文件

def read_train_file(train_file): with codecs.open(train_file, 'r', encoding='utf-8') as f: lines = f.readlines() data = [] labels = [] sent_data = [] sent_labels = [] for line in lines: if line.strip(): parts = line.strip().split(' ') if len(parts) < 2: continue sent_data.append(parts[1]) sent_labels.append(parts[0]) else: data.append(sent_data) labels.append(sent_labels) sent_data = [] sent_labels = [] if sent_data: data.append(sent_data) labels.append(sent_labels) return data, labels

定义函数,将数据转换为特征向量

def data2features(data): features = [] for sent in data: for i in range(len(sent)): feature = {} feature['word'] = sent[i] if i == 0: feature['prev_word'] = '' else: feature['prev_word'] = sent[i-1] if i == len(sent)-1: feature['next_word'] = '' else: feature['next_word'] = sent[i+1] features.append(feature) return features

定义函数,训练模型

def train(train_file, model_file): # 读取训练数据 data, labels = read_train_file(train_file)

# 将数据转换为特征向量
features = data2features(data)

# 将标签编码为数字
label_encoder = LabelEncoder()
label_encoder.fit(np.concatenate(labels))
labels_encoded = [label_encoder.transform(l) for l in labels]

# 将特征向量转换为稀疏矩阵
dict_vectorizer = DictVectorizer()
features_sparse = dict_vectorizer.fit_transform(features)

# 训练决策树模型
clf = DecisionTreeClassifier()
clf.fit(features_sparse, np.concatenate(labels_encoded))

# 保存模型
with open(model_file, 'wb') as f:
    model = (label_encoder, dict_vectorizer, clf)
    pickle.dump(model, f)

定义函数,使用模型进行预测

def predict(data_file, model_file, result_file): # 读取数据 data, _ = read_data_file(data_file)

# 读取模型
with open(model_file, 'rb') as f:
    label_encoder, dict_vectorizer, clf = pickle.load(f)

# 将数据转换为特征向量
features = data2features(data)

# 将特征向量转换为稀疏矩阵
features_sparse = dict_vectorizer.transform(features)

# 使用模型进行预测
labels_encoded = clf.predict(features_sparse)
labels = label_encoder.inverse_transform(labels_encoded)

# 将预测结果输出到文件
with codecs.open(result_file, 'w', encoding='utf-8') as f:
    for i in range(len(data)):
        f.write('{}{}{}

'.format(i+1, data[i], labels[i]))

定义函数,评估模型

def evaluate(data_file, model_file): # 读取数据 data, labels = read_data_file(data_file)

# 读取模型
with open(model_file, 'rb') as f:
    label_encoder, dict_vectorizer, clf = pickle.load(f)

# 将数据转换为特征向量
features = data2features(data)

# 将特征向量转换为稀疏矩阵
features_sparse = dict_vectorizer.transform(features)

# 使用模型进行预测
labels_encoded = clf.predict(features_sparse)
labels_predicted = label_encoder.inverse_transform(labels_encoded)

# 输出评估结果
print(classification_report(labels, labels_predicted))

定义函数,解析地址要素

def parse_address(data_file, model_file, result_file): # 读取数据 data, _ = read_data_file(data_file)

# 读取模型
with open(model_file, 'rb') as f:
    label_encoder, dict_vectorizer, clf = pickle.load(f)

# 将数据转换为特征向量
features = data2features(data)

# 将特征向量转换为稀疏矩阵
features_sparse = dict_vectorizer.transform(features)

# 使用模型进行预测
labels_encoded = clf.predict(features_sparse)
labels = label_encoder.inverse_transform(labels_encoded)

# 将预测结果解析为地址要素
results = []
result = None  # 添加result变量
for i in range(len(data)):
    if labels[i] == 'O':
        if result:  # 如果result不为空,则将其添加到结果列表中
            results.append((result[0], result[1]))
            result = None
        results.append((data[i], 'O'))
    else:
        tag, type = labels[i].split('-')
        if tag == 'B':
            if result:  # 如果result不为空,则将其添加到结果列表中
                results.append((result[0], result[1]))
            result = [data[i], type]
        elif tag == 'I':
            if result:
                result[0] += data[i]
            else:
                result = [data[i], type]
        elif tag == 'E':
            if result:
                result[0] += data[i]
                results.append((result[0], result[1]))
                result = None
            else:
                results.append((data[i], type))
        else:
            if result:  # 如果result不为空,则将其添加到结果列表中
                results.append((result[0], result[1]))
                result = None
if result:  # 处理最后一个result
    results.append((result[0], result[1]))

# 将解析结果输出到文件
with codecs.open(result_file, 'w', encoding='utf-8') as f:
    for i in range(len(data)):
        f.write('{}{}{}

'.format(i+1, data[i], labels[i]))

# 将解析结果输出到控制台
for result in results:
    print(result)

解析地址要素

parse_address('3.txt', 'addr_parsing_model.pkl', '对对对队_addr_parsing_runid.txt')

地址解析模型:使用决策树进行地址要素识别

原文地址: https://www.cveoy.top/t/topic/joLv 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录