地址解析模型:基于决策树的地址要素提取

本代码实现了一个基于决策树模型的地址要素提取方法,可以将地址文本解析成各个要素。

使用方法:

  1. 准备训练数据和测试数据,数据格式为:
标签	词
...

例如:

B-STREET	上海
I-STREET	市
I-STREET	长宁
I-STREET	区
E-STREET	中山
B-NUMBER	555
E-NUMBER	号
  1. 运行train.py脚本,训练模型并保存模型文件。
  2. 运行predict.py脚本,使用训练好的模型对测试数据进行预测,输出结果到文件。
  3. 运行evaluate.py脚本,评估模型的性能。
  4. 运行parse_address.py脚本,对地址文本进行解析,输出解析结果。

代码示例:

import os
import sys
import codecs
import numpy as np
from sklearn.metrics import classification_report
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier
import pickle

# 定义函数,读取数据文件
def read_data_file(data_file):
    with codecs.open(data_file, 'r', encoding='utf-8') as f:
        lines = f.readlines()
    data = []
    labels = []
    for line in lines:
        if line.strip():
            parts = line.strip().split('')
            if len(parts) < 2:
                continue
            data.append(parts[1])
            labels.append(parts[0])
    return data, labels

# 定义函数,读取训练数据文件
def read_train_file(train_file):
    with codecs.open(train_file, 'r', encoding='utf-8') as f:
        lines = f.readlines()
    data = []
    labels = []
    sent_data = []
    sent_labels = []
    for line in lines:
        if line.strip():
            parts = line.strip().split('	')
            if len(parts) < 2:
                continue
            sent_data.append(parts[1])
            sent_labels.append(parts[0])
        else:
            data.append(sent_data)
            labels.append(sent_labels)
            sent_data = []
            sent_labels = []
    if sent_data:
        data.append(sent_data)
        labels.append(sent_labels)
    return data, labels

# 定义函数,将数据转换为特征向量
def data2features(data):
    features = []
    for sent in data:
        for i in range(len(sent)):
            feature = {}
            feature['word'] = sent[i]
            if i == 0:
                feature['prev_word'] = '<s>'
            else:
                feature['prev_word'] = sent[i-1]
            if i == len(sent)-1:
                feature['next_word'] = '</s>'
            else:
                feature['next_word'] = sent[i+1]
            features.append(feature)
    return features

# 定义函数,训练模型
def train(train_file, model_file):
    # 读取训练数据
    data, labels = read_train_file(train_file)

    # 将数据转换为特征向量
    features = data2features(data)

    # 将标签编码为数字
    label_encoder = LabelEncoder()
    label_encoder.fit(np.concatenate(labels))
    labels_encoded = [label_encoder.transform(l) for l in labels]

    # 将特征向量转换为稀疏矩阵
    dict_vectorizer = DictVectorizer()
    features_sparse = dict_vectorizer.fit_transform(features)

    # 训练决策树模型
    clf = DecisionTreeClassifier()
    clf.fit(features_sparse, np.concatenate(labels_encoded))

    # 保存模型
    with open(model_file, 'wb') as f:
        model = (label_encoder, dict_vectorizer, clf)
        pickle.dump(model, f)

# 定义函数,使用模型进行预测
def predict(data_file, model_file, result_file):
    # 读取数据
    data, _ = read_data_file(data_file)

    # 读取模型
    with open(model_file, 'rb') as f:
        label_encoder, dict_vectorizer, clf = pickle.load(f)

    # 将数据转换为特征向量
    features = data2features(data)

    # 将特征向量转换为稀疏矩阵
    features_sparse = dict_vectorizer.transform(features)

    # 使用模型进行预测
    labels_encoded = clf.predict(features_sparse)
    labels = label_encoder.inverse_transform(labels_encoded)

    # 将预测结果输出到文件
    with codecs.open(result_file, 'w', encoding='utf-8') as f:
        for i in range(len(data)):
            f.write('{}{}{}
'.format(i+1, data[i], labels[i]))

# 定义函数,评估模型
def evaluate(data_file, model_file):
    # 读取数据
    data, labels = read_data_file(data_file)

    # 读取模型
    with open(model_file, 'rb') as f:
        label_encoder, dict_vectorizer, clf = pickle.load(f)

    # 将数据转换为特征向量
    features = data2features(data)

    # 将特征向量转换为稀疏矩阵
    features_sparse = dict_vectorizer.transform(features)

    # 使用模型进行预测
    labels_encoded = clf.predict(features_sparse)
    labels_predicted = label_encoder.inverse_transform(labels_encoded)

    # 输出评估结果
    print(classification_report(labels, labels_predicted))

# 定义函数,解析地址要素
def parse_address(data_file, model_file, result_file):
    # 读取数据
    data, labels = read_data_file(data_file)

    # 读取模型
    with open(model_file, 'rb') as f:
        label_encoder, dict_vectorizer, clf = pickle.load(f)

    # 将数据转换为特征向量
    features = data2features(data)

    # 将特征向量转换为稀疏矩阵
    features_sparse = dict_vectorizer.transform(features)

    # 使用模型进行预测
    labels_encoded = clf.predict(features_sparse)
    labels = label_encoder.inverse_transform(labels_encoded)

    # 将预测结果解析为地址要素
    results = []
    for i in range(len(data)):
        if labels[i] == 'O':
            results.append((data[i], 'O'))
        else:
            tag, type = labels[i].split('-')
            if tag == 'B':
                result = [data[i], type]
            elif tag == 'I':
                if result:
                    result[0] += data[i]
                else:
                    result = [data[i], type]
            elif tag == 'E':
                if result:
                    result[0] += data[i]
                    results.append((result[0], result[1]))
                    result = None
                else:
                    results.append((data[i], type))
            else:
                result = None
    if result:
        results.append((result[0], result[1]))

    # 将解析结果输出到文件
    with codecs.open(result_file, 'w', encoding='utf-8') as f:
        for i in range(len(data)):
            f.write('{}{}{}
'.format(i+1, data[i], labels[i]))

    # 将解析结果输出到控制台
    for result in results:
        print(result)


# 解析地址要素
parse_address('3.txt', 'addr_parsing_model.pkl', '对对对队_addr_parsing_runid.txt')

注意:

  • 代码中的data_filemodel_fileresult_file等参数需要根据实际情况进行修改。
  • 代码中的标签类型可以根据实际情况进行调整。
  • 代码中使用DictVectorizer将特征向量转换为稀疏矩阵,可以有效地节省内存空间。
  • 代码中使用DecisionTreeClassifier作为分类器,可以根据实际情况选择其他分类器。
  • 代码中使用pickle库保存模型文件,可以方便地加载模型文件。

改进建议:

  • 可以使用其他更先进的机器学习模型,例如神经网络模型,来提高模型的性能。
  • 可以使用更多特征,例如词性、词语的频率等,来提高模型的泛化能力。
  • 可以使用更复杂的解析算法,例如基于条件随机场的解析算法,来提高解析的准确率。
  • 可以使用更有效的特征工程方法,例如使用词嵌入技术,来提高模型的性能。
地址解析模型:基于决策树的地址要素提取

原文地址: https://www.cveoy.top/t/topic/joLt 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录