Python 遗传算法代码示例 - 求解最小值
以下是一个简单的遗传算法的 Python 代码,用于求解目标函数 f(x) = x^2 的最小值:
import random
# 定义目标函数,这里以求解 f(x) = x^2 的最小值为例
def objective_function(x):
return x**2
# 定义遗传算法参数
population_size = 10 # 种群大小
chromosome_length = 5 # 染色体长度
mutation_rate = 0.1 # 变异率
crossover_rate = 0.8 # 交叉率
max_generation = 100 # 最大迭代次数
# 初始化种群
def init_population(population_size, chromosome_length):
population = []
for i in range(population_size):
chromosome = []
for j in range(chromosome_length):
chromosome.append(random.randint(0, 1))
population.append(chromosome)
return population
# 计算适应度
def calculate_fitness(chromosome):
x = 0
for i in range(len(chromosome)):
x += chromosome[i] * (2 ** i)
return objective_function(x)
# 选择
def selection(population):
fitness_values = [calculate_fitness(chromosome) for chromosome in population]
total_fitness = sum(fitness_values)
probabilities = [fitness / total_fitness for fitness in fitness_values]
cumulative_probabilities = [sum(probabilities[:i+1]) for i in range(len(probabilities))]
new_population = []
for i in range(len(population)):
r = random.random()
for j in range(len(cumulative_probabilities)):
if r <= cumulative_probabilities[j]:
new_population.append(population[j])
break
return new_population
# 交叉
def crossover(parent1, parent2):
if random.random() < crossover_rate:
crossover_point = random.randint(1, len(parent1)-1)
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
return child1, child2
else:
return parent1, parent2
# 变异
def mutation(chromosome):
for i in range(len(chromosome)):
if random.random() < mutation_rate:
chromosome[i] = 1 - chromosome[i]
return chromosome
# 遗传算法主函数
def genetic_algorithm(population_size, chromosome_length, mutation_rate, crossover_rate, max_generation):
population = init_population(population_size, chromosome_length)
for i in range(max_generation):
population = selection(population)
new_population = []
for j in range(int(population_size/2)):
parent1 = population[random.randint(0, population_size-1)]
parent2 = population[random.randint(0, population_size-1)]
child1, child2 = crossover(parent1, parent2)
child1 = mutation(child1)
child2 = mutation(child2)
new_population.append(child1)
new_population.append(child2)
population = new_population
best_chromosome = max(population, key=calculate_fitness)
x = 0
for i in range(len(best_chromosome)):
x += best_chromosome[i] * (2 ** i)
return x, objective_function(x)
# 测试
best_x, best_y = genetic_algorithm(population_size, chromosome_length, mutation_rate, crossover_rate, max_generation)
print('最优解:x =', best_x, 'y =', best_y)
该代码实现了一个简单的遗传算法,用于求解目标函数 f(x) = x^2 的最小值。其中,init_population() 函数用于初始化种群,calculate_fitness() 函数用于计算适应度,selection() 函数用于选择,crossover() 函数用于交叉,mutation() 函数用于变异,genetic_algorithm() 函数是遗传算法的主函数。在主函数中,首先初始化种群,然后进行若干代的选择、交叉和变异,最终得到最优解。
该代码可以作为学习遗传算法的入门示例,读者可以根据自己的需求进行修改和扩展。
原文地址: https://www.cveoy.top/t/topic/jkT2 著作权归作者所有。请勿转载和采集!