Write 10 Sample codes, using openai and python
- Setting up OpenAI API credentials:
import openai_secret_manager
secrets = openai_secret_manager.get_secret("openai")
openai.api_key = secrets["api_key"]
- Creating a new GPT-3 instance:
import openai
openai.api_key = "YOUR API KEY HERE"
model_engine = "text-davinci-002"
instance = openai.Model.create(model=model_engine)
- Generating text with GPT-3:
import openai
openai.api_key = "YOUR API KEY HERE"
model_engine = "text-davinci-002"
prompt = "What is the meaning of life?"
response = openai.Completion.create(
engine=model_engine,
prompt=prompt,
max_tokens=50
)
print(response.choices[0].text)
- Analyzing text sentiment with OpenAI:
import openai
openai.api_key = "YOUR API KEY HERE"
model_engine = "text-davinci-002"
text = "I am feeling happy today."
analysis = openai.Analysis.create(
engine=model_engine,
prompt=text,
model="sentiment"
)
print(analysis.sentiment)
- Creating a new OpenAI classification model:
import openai
openai.api_key = "YOUR API KEY HERE"
model_engine = "text-davinci-002"
model_name = "my-classification-model"
new_model = openai.Model.create(
engine=model_engine,
name=model_name,
training_data=[],
training_configuration={
"epochs": 5,
"batch_size": 128
}
)
print(new_model.id)
- Training an OpenAI classification model:
import openai
openai.api_key = "YOUR API KEY HERE"
model_id = "YOUR MODEL ID HERE"
training_data = [
["This is a positive example", "positive"],
["This is a negative example", "negative"]
]
training = openai.Model.train(
model=model_id,
examples=training_data,
epochs=5,
batch_size=128
)
print(training.id)
- Generating text with an OpenAI classification model:
import openai
openai.api_key = "YOUR API KEY HERE"
model_id = "YOUR MODEL ID HERE"
prompt = "This is a positive example"
response = openai.Completion.create(
model=model_id,
prompt=prompt,
max_tokens=50
)
print(response.choices[0].text)
- Analyzing text with OpenAI's semantic search:
import openai
openai.api_key = "YOUR API KEY HERE"
model_engine = "text-davinci-002"
corpus = ["apple", "banana", "cherry"]
query = "I want to buy a fruit"
results = openai.Completion.create(
engine=model_engine,
prompt=query,
max_tokens=50,
search_model=model_engine,
model=model_engine,
documents=corpus,
return_metadata=True
)
for result in results.choices:
print(result.text)
print(result.metadata["document"])
- Generating text with OpenAI's Codex:
import openai
openai.api_key = "YOUR API KEY HERE"
model_engine = "davinci-codex-002"
code = "import numpy\n\nx = numpy.array([1, 2, 3])\nprint(x)"
response = openai.Completion.create(
engine=model_engine,
prompt=code,
max_tokens=50
)
print(response.choices[0].text)
- Generating text with OpenAI's DALL-E:
import openai
openai.api_key = "YOUR API KEY HERE"
model_engine = "image-alpha-001"
prompt = "a chair made of pizza"
response = openai.Completion.create(
engine=model_engine,
prompt=prompt,
max_tokens=50
)
print(response.choices[0].text)
原文地址: https://www.cveoy.top/t/topic/jhq 著作权归作者所有。请勿转载和采集!