光通过物体传播有吸收、反射和透射三种方式。对于不透明制品来说大部分光线会被其表面吸收或反射。吸收和反射的光线在经过透明度等校正后按波长分解成不同的颜色成分形成光谱图。该光谱图通常由 400--700nm 波段的各色光组成。为简化计算最终配色后的颜色的反射率以 2nm 为间隔的光谱数据来表示。对于不透明材料而言吸收系数 K散射系数 S 的比值与反射率 R 之间存在一定关系具体请参考文献1 《计算机配
以下是用遗传算法解决不透明制品配色优化问题的示例代码:
import random
# 定义目标样的 R 值
target_R = [0.2, 0.4, 0.6, 0.8]
# 读取光谱三刺激值加权表
spectral_data = []
with open('附件1.txt', 'r') as file:
for line in file:
data = line.strip().split(',')
spectral_data.append([float(x) for x in data])
# 读取着色剂 K/S 基础数据库
dye_data = []
with open('附件2.txt', 'r') as file:
for line in file:
data = line.strip().split(',')
dye_data.append([float(x) for x in data])
# 定义遗传算法参数
population_size = 100 # 种群大小
chromosome_length = 10 # 染色体长度,表示配方中使用的着色剂数量
iteration = 100 # 迭代次数
elite_rate = 0.1 # 精英个体比例
mutation_rate = 0.01 # 变异率
# 初始化种群
def init_population():
population = []
for _ in range(population_size):
chromosome = [random.randint(0, len(dye_data)-1) for _ in range(chromosome_length)]
population.append(chromosome)
return population
# 计算染色体对应的配方的色差
def calculate_color_difference(chromosome):
color_diff = 0
for i in range(len(target_R)):
R = target_R[i]
S = 0
for j in range(chromosome_length):
S += dye_data[chromosome[j]][i]
color_diff += (R - S) ** 2
return color_diff
# 选择操作
def selection(population):
elite_num = int(population_size * elite_rate)
elite = sorted(population, key=lambda x: calculate_color_difference(x))[:elite_num]
return elite
# 交叉操作
def crossover(parent1, parent2):
pos = random.randint(0, chromosome_length)
child1 = parent1[:pos] + parent2[pos:]
child2 = parent2[:pos] + parent1[pos:]
return child1, child2
# 变异操作
def mutation(child):
pos = random.randint(0, chromosome_length-1)
child[pos] = random.randint(0, len(dye_data)-1)
return child
# 遗传算法主程序
def genetic_algorithm():
population = init_population()
for _ in range(iteration):
new_population = []
elite = selection(population)
while len(new_population) < population_size:
if random.random() < mutation_rate:
index = random.randint(0, len(elite)-1)
child = mutation(elite[index].copy())
else:
index1 = random.randint(0, len(elite)-1)
index2 = random.randint(0, len(elite)-1)
child1, child2 = crossover(elite[index1].copy(), elite[index2].copy())
child = child1 if random.random() < 0.5 else child2
new_population.append(child)
population = new_population
best_chromosomes = sorted(population, key=lambda x: calculate_color_difference(x))[:10]
return best_chromosomes
# 运行遗传算法并输出结果
best_chromosomes = genetic_algorithm()
for chromosome in best_chromosomes:
color_diff = calculate_color_difference(chromosome)
print("Color difference:", color_diff)
print("Chromosome:", chromosome)
print("Color formula:", [dye_data[index] for index in chromosome])
print()
请注意,以上代码仅为示例,实际使用时需要根据具体的数据文件格式和计算方法进行相应的修改
原文地址: https://www.cveoy.top/t/topic/iyr4 著作权归作者所有。请勿转载和采集!