下面是一个使用Flink读取Kafka和Redis的数据,并将数据写入MySQL的示例代码:

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisConfigBase;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;

import java.util.Properties;

public class FlinkKafkaRedisToMysqlExample {

    public static void main(String[] args) throws Exception {
        // 设置执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 设置Kafka消费者配置
        Properties kafkaProps = new Properties();
        kafkaProps.setProperty("bootstrap.servers", "localhost:9092");
        kafkaProps.setProperty("group.id", "flink-kafka-redis-mysql");

        // 创建Kafka数据流
        FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("input-topic", new SimpleStringSchema(), kafkaProps);
        DataStream<String> kafkaStream = env.addSource(kafkaConsumer);

        // 将Kafka数据写入Redis
        FlinkJedisConfigBase redisConf = new FlinkJedisPoolConfig.Builder()
                .setHost("localhost")
                .setPort(6379)
                .build();
        kafkaStream.addSink(new RedisSink<>(redisConf, new RedisSinkMapper()));

        // 从Redis读取数据
        FlinkJedisConfigBase redisReadConf = new FlinkJedisPoolConfig.Builder()
                .setHost("localhost")
                .setPort(6379)
                .build();
        DataStream<Tuple2<String, String>> redisStream = env.addSource(new RedisSource(redisReadConf));

        // 将Redis数据写入MySQL
        redisStream.map(new RedisToMysqlMapper()).addSink(new MysqlSink());

        // 执行任务
        env.execute("Flink Kafka Redis MySQL Example");
    }

    // RedisSink映射器
    public static class RedisSinkMapper implements RedisMapper<String> {

        @Override
        public RedisCommandDescription getCommandDescription() {
            return new RedisCommandDescription(RedisCommand.SET, null);
        }

        @Override
        public String getKeyFromData(String data) {
            return "redis-key";
        }

        @Override
        public String getValueFromData(String data) {
            return data;
        }
    }

    // RedisSource
    public static class RedisSource extends RichSourceFunction<Tuple2<String, String>> {

        private FlinkJedisConfigBase redisConf;
        private transient Jedis jedis;

        public RedisSource(FlinkJedisConfigBase redisConf) {
            this.redisConf = redisConf;
        }

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
            jedis = new Jedis(redisConf.getHost(), redisConf.getPort());
        }

        @Override
        public void run(SourceContext<Tuple2<String, String>> ctx) throws Exception {
            while (!ctx.isCancelled()) {
                // 从Redis中读取数据
                String data = jedis.get("redis-key");
                Tuple2<String, String> tuple = new Tuple2<>("redis-key", data);
                ctx.collect(tuple);
                Thread.sleep(1000); // 每秒读取一次
            }
        }

        @Override
        public void cancel() {
            jedis.close();
        }
    }

    // RedisToMysqlMapper
    public static class RedisToMysqlMapper implements MapFunction<Tuple2<String, String>, Tuple2<String, Integer>> {

        @Override
        public Tuple2<String, Integer> map(Tuple2<String, String> value) throws Exception {
            return new Tuple2<>(value.f0, value.f1.length());
        }
    }

    // MysqlSink
    public static class MysqlSink extends RichSinkFunction<Tuple2<String, Integer>> {

        private Connection conn;
        private PreparedStatement stmt;

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
            // 创建MySQL连接
            Class.forName("com.mysql.jdbc.Driver");
            conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "password");
            stmt = conn.prepareStatement("INSERT INTO result (key, length) VALUES (?, ?)");
        }

        @Override
        public void invoke(Tuple2<String, Integer> value, Context context) throws Exception {
            stmt.setString(1, value.f0);
            stmt.setInt(2, value.f1);
            stmt.executeUpdate();
        }

        @Override
        public void close() throws Exception {
            stmt.close();
            conn.close();
        }
    }
}

请根据你的实际情况修改代码中的连接参数和数据表结构

flink读取kafka和redis的数据写入mysql

原文地址: https://www.cveoy.top/t/topic/iVbL 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录