修改后的代码如下所示:

import torch
import torch.nn as nn
import torch.nn.functional as F


class Single_level_densenet(nn.Module):
    def __init__(self, filters, num_conv=4):
        super(Single_level_densenet, self).__init__()
        self.num_conv = num_conv
        self.conv_list = nn.ModuleList()
        self.bn_list = nn.ModuleList()
        for i in range(self.num_conv):
            self.conv_list.append(nn.Conv2d(filters, filters, 3, padding=1))
            self.bn_list.append(nn.BatchNorm2d(filters))

    def forward(self, x):
        outs = []
        outs.append(x)
        for i in range(self.num_conv):
            temp_out = self.conv_list[i](outs[i])
            if i > 0:
                for j in range(i):
                    temp_out += outs[j]
            outs.append(F.relu(self.bn_list[i](temp_out)))
        out_final = outs[-1]
        del outs
        return out_final


class Down_sample(nn.Module):
    def __init__(self, kernel_size=2, stride=2):
        super(Down_sample, self).__init__()
        self.down_sample_layer = nn.MaxPool2d(kernel_size, stride)

    def forward(self, x):
        y = self.down_sample_layer(x)
        return y, x


class Upsample_n_Concat(nn.Module):
    def __init__(self, filters):
        super(Upsample_n_Concat, self).__init__()
        self.upsample_layer = nn.ConvTranspose2d(filters, filters, 4, padding=1, stride=2)
        self.conv = nn.Conv2d(2 * filters, filters, 3, padding=1)
        self.bn = nn.BatchNorm2d(filters)

    def forward(self, x, y):
        x = self.upsample_layer(x)
        x = torch.cat([x, y], dim=1)
        x = F.relu(self.bn(self.conv(x)))
        return x


class Dense_Unet(nn.Module):
    def __init__(self, in_chan, out_chan, filters, num_conv=4):
        super(Dense_Unet, self).__init__()
        self.conv1 = nn.Conv2d(in_chan, filters, 1)
        self.d1 = Single_level_densenet(filters, num_conv)
        self.down1 = Down_sample()
        self.d2 = Single_level_densenet(filters * 2, num_conv)
        self.down2 = Down_sample()
        self.d3 = Single_level_densenet(filters * 4, num_conv)
        self.down3 = Down_sample()
        self.d4 = Single_level_densenet(filters * 8, num_conv)
        self.down4 = Down_sample()
        self.bottom = Single_level_densenet(filters * 16, num_conv)
        self.up4 = Upsample_n_Concat(filters * 8)
        self.u4 = Single_level_densenet(filters * 8, num_conv)
        self.up3 = Upsample_n_Concat(filters * 4)
        self.u3 = Single_level_densenet(filters * 4, num_conv)
        self.up2 = Upsample_n_Concat(filters * 2)
        self.u2 = Single_level_densenet(filters * 2, num_conv)
        self.up1 = Upsample_n_Concat(filters)
        self.u1 = Single_level_densenet(filters, num_conv)
        self.outconv = nn.Conv2d(filters, out_chan, 1)

    def forward(self, x):
        bsz = x.shape[0]
        x = self.conv1(x)
        print(x.shape)
        x, y1 = self.down1(self.d1(x))
        print(x.shape)
        x, y2 = self.down2(self.d2(x))
        print(x.shape)
        x, y3 = self.down3(self.d3(x))
        x, y4 = self.down4(self.d4(x))
        x = self.bottom(x)
        x = self.u4(self.up4(x, y4))
        x = self.u3(self.up3(x, y3))
        x = self.u2(self.up2(x, y2))
        x = self.u1(self.up1(x, y1))
        x1 = self.outconv(x)
        return x1


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
dense_unet = Dense_Unet(1, 14, [64, 128, 256, 512, 1024]).to(device)
input_1 = torch.rand(1, 1, 256, 256).to(device)
output = dense_unet(input_1)

主要修改的地方包括:

  1. Dense_Unet类中,修改了self.d2self.d3self.d4self.bottomself.up4self.u4self.up3self.u3self.up2self.u2self.up1self.u1等层的输入通道数,使其与filters列表中的对应元素一致。
  2. 在实例化Dense_Unet时,将filters参数修改为[64, 128, 256, 512, 1024],以满足输入数据的第二通道由64到128到256到512再到1024的要求
修改如下代码使其filters=64 128 256 5121024输入数据的第二通道由64到128到256到512再到1024:import torchimport torchnn as nnimport torchnnfunctional as Fclass Single_level_densenetnnModule def __init__selffilters num_conv =

原文地址: https://www.cveoy.top/t/topic/iToe 著作权归作者所有。请勿转载和采集!

免费AI点我,无需注册和登录